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In this chapter we first present a review of the existing solutions to the

problem of image retrieval and scene classification followed by a brief review of low

level image representation. We then introduce the semantic image representation

for scene classification.

2.1 Preliminaries

We start by briefly reviewing appearance-based modeling and the design of

visual recognition systems for image retrieval and scene classification.

2.1.1 Notations

Consider a image database D = {I1, . . . , ID} where images Ii are ob-

servations from a random variable X, defined on some feature space X . For

example, X could be the space of discrete cosine transform (DCT), or SIFT

descriptors. Each image is represented as a set of N low-level feature vectors

I = {x1, . . . ,xN},xi ∈ X , assumed to be sampled independently. This is com-

monly referred to as the “bag-of-features” (BoF) representation, since the image

is represented as an orderless collection of visual features. A popular extension

of the BoF representation is the “bag-of-words” (BoW) [27, 74] representation.

In BoW representation, the feature space X is further quantized into |V| unique

bins, defined by a collection of centroids, V = {1, . . . ,V|}, and each feature vector

xn, n ∈ {1, . . . , N} is mapped to its closest centroid. Each image is then repre-

sented as a collection of visual words, I = {v1, . . . , vN}, vn ∈ V, where vn is the

bin that contains the feature vector xn. This facilitates the representation of the

image as a vector in <|V|, however it has been argued that feature quantization

leads to significant degradation in its discriminative power [15]. In this work, we

rely on both BoF and BoW representation, BoF being the default choice of image

representation.
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2.1.2 Image Retrieval Systems

The starting point for any retrieval system is the image database D =

{I1, . . . , ID}. Although several image retrieval formulations are possible, in this

work, the framework underlying all query paradigms is that of minimum probabil-

ity of error retrieval, as introduced in [156]. Under this formulation, each image is

considered as an observation from a different class, determined by a random vari-

able Y defined on {1, . . . , D}. Given a query image I, the MPE retrieval decision

is to assign it to the class of largest posterior probability, i.e.

y∗ = arg max
y

PY |X(y|I). (2.1)

and image retrieval is based on the mapping g : X → {1, . . . , D} of (2.1). Using

Bayes rule and under the assumption of independent samples this is equivalent to,

y∗ = arg max
y

PX|Y (I|y)PY (y). (2.2)

= arg max
y

∏

j

PX|Y(xj|y)PY (y). (2.3)

where PX|Y(x|y) is the class conditional density, which serves as the appearance

model for the yth image and PY (y) the class prior. Although any prior class distri-

bution PY (y) can be supported, we assume a uniform distribution in what follows.

To model the appearance distribution, we rely on Gaussian mixture models

(GMM). These are popular models for the distribution of visual features [21, 57,

145, 12] and have the form

PX|Y (x|y; Γy) =
∑

j

αjyG(x, µjy,Σ
j
y) (2.4)

where, αy is a probability mass function such that
∑

j α
j
y = 1, G(x, µ,Σ) a Gaussian

density of mean µ and covariance Σ, and j an index over the mixture components.

Some density estimation [33] procedure can be used to estimate the parameters of

this distribution. In this work we use the well known expectation-maximization

(EM) algorithm [30]. Henceforth, we refer to the above retrieval paradigm as

query-by-visual-example (QVBE).
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Figure 2.1: The generative model underlying image formation at the appearance

level. w represents a sample from a vocabulary of scene categories or semantic

concepts, and an image I is composed of N patches, xn, sampled independently

from PX|W (x|w). Note that, throughout this work, we adopt the standard plate

notation of [14] to represent graphical models.

2.1.3 Scene Classification Systems

A scene classification system appends the database D with a vocabulary

of scene category W = {1, . . . , K} and each image with a scene label wi, making

DW = {(I1,w1), . . . , (ID,wD)}. The scene label wi is considered to be an obser-

vation from a scene category random variable W defined on W. Note that, for

scene classification systems, the label wi is an indicator vector such that wi,j = 1

if the ith image is an observation from the jth scene category. Each scene category

induces a probability density {PX|W (x|w)}Kw=1 on X , from which feature vectors

are drawn. This is denoted as the appearance model for the category w which

describes how observations are drawn from the low-level visual feature space X .

As shown in Figure 2.1, the generative model for a feature vector x thus consists

of two steps: first a category label w is selected, with probability PW (w) = πw,

and the feature vector then drawn from PX|W (xn|w). Both concepts and feature

vectors are drawn independently, with replacement.

Given a new image I, classification is performed using the minimum prob-

ability of error framework, where the optimal decision rule is to assign it to the

category of largest posterior probability

w∗ = arg max
w

PW |X(w|I). (2.5)

where PW |X(w|I) is posterior probability of category w given I and can be com-
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Figure 2.2: Learning the scene category (semantic concept) density from the

set Dw of all training images annotated with the wth caption in W(L), using

hierarchical estimation [21]

.

puted used Bayes rule under the assumption of independent samples as,

PW |X(w|I) =
PX|W (I|w)PW (w)

PX(I)
. (2.6)

=

∏

j PX|W(xj|w)PW (w)
∏

j PX(xj)
(2.7)

Although any prior class distribution PW (w) can be supported, we assume a uni-

form distribution in what follows. This leads to

PW |X(w|I) ∝
∏

j PX|W(xj|w)
∏

j PX(xj)
(2.8)

The appearance model PX|W(x|w) is modeled using a GMM, defined by the

parameters Ωw = {νjw,Φj
w, β

j
w},

PX|W (x|w; Ωw) =
∑

j

βjwG(x, νjw,Φ
j
w) (2.9)

where, βw is a probability mass function such that
∑

j β
j
w = 1 and j an index over

the mixture components. The parameters Ωw are learned from the set DW
w of all

training images annotated with the wth category using some density estimation

procedure. In this work we rely on a hierarchical estimation procedure first pro-

posed in [159], for image indexing. As shown in Figure 2.2, this procedure is itself

composed of two steps. First, a Gaussian mixture is learned for each image in DW
w ,
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producing a sequence of mixture densities

PX|Y,W (x|y, w) =
∑

k

αkw,yG(x, µkw,y,Σ
k
w,y), (2.10)

where Y is a hidden variable that indicates the index of the image in DW
w . Note

that, if a QBVE has already been implemented, these densities are just replicas

of the ones of (2.4). In particular, if the mapping M : {1, . . . , L} × {1, . . . , D} →
{1, . . . , D} translates the index (w, y) of the yth image in DW

w into the image’s

index w on DW , i.e. w = M(w, y), then

PX|Y,W (x|y, w) = PX|W (x|M(w, y)).

Omitting, for brevity, the dependence of the mixture parameters on the seman-

tic class w, assuming that each mixture has κ components, and that the car-

dinality of DW
w is Dw, this produces Dwκ mixture components of parameters

{αky, µky,Σk
y}, y = 1, . . . , Dw, k = 1, . . . , κ. The second step is an extension of the

EM algorithm, which clusters the Gaussian components into the mixture distribu-

tion of (2.9), using a hierarchical estimation technique (see [21, 159] for details).

Because the number of parameters in each image mixture is orders of magnitude

smaller than the number of feature vectors extracted from the image, the com-

plexity of estimating concept mixtures is negligible when compared to that of

estimating the individual image mixtures.

2.1.4 Image Representation

The literature on image representation is vast and goes back over five

decades [1]. Although any type of visual features are acceptable, we only con-

sider localized features, i.e., features of limited spatial support [153, 94, 150, 117].

Thus, a localized feature is a representation of a collection of adjoining image

pixels, separating it from its immediate neighborhood. Usually image properties

— such as intensity, color, texture, edges, edge orientations, frequency spectrum

— change across these features. Localized features do not require sophisticated

image segmentation procedures, which makes them computationally efficient and

robust to scene clutter. Owing to these benefits, in recent years, they have been
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quite successful for visual recognition tasks [94]. A large number of localized fea-

tures have been proposed in the literature, the simplest being a vector of image

pixel intensities [77]. Other descriptors emphasize different image properties like

color [153, 49], texture [117, 111, 34], shape [49, 7], edges [85, 94], frequency spec-

trum [46, 62, 118, 156] etc. A comparison of these features for visual recognition

tasks was presented in [153, 94]. In this work, since the main aim is to present

an image representation that incorporates semantic cues, we do not debate on the

choice of low-level feature representation, and rely on two popular localized image

representations viz. scale invariant feature transform (SIFT) and discrete cosine

transform (DCT). Infact, in Chapter 6 we show that, the semantic image represen-

tation improves over low-level visual features and moreover, the choice of low-level

feature representation is not critical to the gains achieved. Next we present a brief

description of both DCT and SIFT.

Discrete Cosine Transform

The discrete cosine transform (DCT) [62] expresses an image patch in terms

of sum of cosine functions oscillating at different frequencies. A DCT of an image

patch of size (N1, N2) is obtained as,

Xk1,k2 =

N1−1
∑

n1=0

N2−1
∑

n2=0

xn1,n2 cos

[

π

N1

(

n1 +
1

2

)

k1

]

cos

[

π

N2

(

n2 +
1

2

)

k2

]

. (2.11)

The DCT is widely used in image compression, and previous recognition experi-

ments have shown that DCT features can lead to recognition rates comparable to

those of many features proposed in the recognition literature [162]. It has also been

shown that, for local image neighborhoods, DCT features approximates principal

component analysis (PCA). This makes the space of DCT coefficients a natural

choice for the feature space, X , for visual recognition.

In this thesis, DCT features are computed on a dense regular grid, with a

step of 8 pixels. 8 × 8 image patches are extracted around each grid point, and

8 × 8 DCT coefficients computed per patch and color channel. For monochrome

images this results in a feature space of 64 dimensions. For color images the space

is 192 dimensional.
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Scale Invariant Feature Transform

The scale invariant feature transformation (SIFT), was proposed in [85] as

a feature representation invariant to scale, orientation, and affine distortion, and

partially invariant to illumination changes. SIFT is a measure of the orientations

of the edges pixels in a given image patch. To compute the SIFT, 8-bin orientation

histograms are computed in a 4× 4 grid. This leads to a SIFT feature vector with

4 × 4 × 8 = 128 dimensions. This vector is normalized to enhance invariance to

changes in illumination.

SIFT can computed for image patches which are selected either 1) by in-

terest point detection, referred to as SIFT-INTR, or 2) on a dense regular grid,

referred to as SIFT-GRID. While several interest point detectors are available in

the literature, in this thesis SIFT-INTR is computed using interest points ob-

tained with three saliency measures — Harris-Laplace, Laplace-of-Gaussian, and

Difference-of-Gaussian — which are merged. These measures also provide scale

information, which is used in the computation of SIFT features. For a dense grid,

SIFT-GRID, feature points are sampled every 8 pixels. For both the strategies,

SIFT features1 are then computed over a 16×16 neighborhood around each feature

point. On average, the two strategies yield similar number of samples per image.

2.2 Semantic Image Representation

While appearance features are intensity, texture, edge orientations, fre-

quency bases, etc. those of the semantic representation are concept probabilities.

Semantic image representation differs from appearance based representation in

that, images are represented by vectors of concept counts I = (c1, . . . , cL)
T , rather

than being sampled from low-level feature space X . Each low level feature vector

x for a given image, is assumed to be sampled from the probability distribution of

a semantic concept and ci is the number of low level feature vectors drawn from

the ith concept. The count vector for the yth image is drawn from a multinomial

1Computed using the SIFT implementation made available by LEAR at
http://lear.inrialpes.fr/people/dorko/downloads.html
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Figure 2.3: Image representation in semantic space S, with a semantic multino-

mial (SMN) distribution. The SMN is a vector of posterior concept probabilities

which encodes the co-occurrence of various concepts in the image, based on visual

appearance.

variable T of parameters πy = (π1
y , . . . , π

L
y )T

PT|Y (I|y; πy) =
n!

∏L
k=1 ck!

L
∏

j=1

(πjy)
cj , (2.12)

where πiy is the probability that a feature vector is drawn from the ith concept.

The random variable T can be seen as the result of a feature transformation from

the space of visual features X to the L-dimensional probability simplex SL. This

mapping, Π : X → SL such that Π(X) = T, maps the image I = {x1, . . . ,xN},
thereby the distribution PX|Y (I|y), into the multinomials PT|Y (I|y), and estab-

lishes a correspondence between images and points πy ∈ SL, as illustrated by

Figure 2.3. We refer to each concept probability πiy, i = 1, . . . , L a semantic fea-

ture and the probability vector πy as a semantic multinomial (SMN) distribution.

The probability simplex SL is itself referred to as the semantic space [119], which

unlike X has explicit semantics. Semantic features, or concepts, outside the vo-

cabulary simply define directions orthogonal to the learned semantic space. In the

example of 1.1, the mapping of the image onto the semantic simplex assigns high

probability to (known) concepts such as ‘train’, ‘smoke’, ‘railroad’ etc.
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2.2.1 The Semantic Multinomial

Learning the semantic space requires an image database D and a vocabulary

of semantic concepts, L = {1, . . . , L}, where each image is labeled with a label

vector, cd according to L, making DL = {(I1, c1), . . . , (ID, cD)}. cd is a binary

L-dimensional vector such that cd,i = 1 if the dth image was annotated with the ith

keyword in L. The dataset is said to be weakly labeled if absence of a keyword from

caption cd does not necessarily mean that the associated concept is not present in

Id. For example, an image containing “sky” may not be explicitly labeled with that

keyword. This is usually the case in practical scenarios, since each image is likely

to be annotated with a small caption that only identifies the semantics deemed as

most relevant to the labeler. We assume weak labeling throughout this work. Note

that, the vocabulary of scene categories W can readily serve as a substitute for the

vocabulary of semantic concepts L. Infact, in absence of datasets annotated with

semantic concepts, this is often the modus operandi to learn the semantic space.

The only difference between the annotated datasets DW and DL is that in DW an

image can be annotated with a single scene category (semantic concept) whereas

in DL each image can be labeled with multiple concepts.

Given an annotated dataset DL, appearance based concept models are

learned for all the concepts in L similar to that of learning appearance models for

the scene categories. Next, the posterior concept probabilities PW |X(w|xk), w ∈
{1, . . . , L} is computed for each feature vector xk, k ∈ {1, . . . , N}, and xk is as-

signed to the concept of largest probability. Denoting, cw as the total count of

feature vectors assigned to the wth concept in a given image, the maximum likeli-

hood estimate of the semantic feature πw is then given by [33]

πML
w = arg max

πw

L
∏

j=1

π
cj
j =

cw
∑

j cj
=
cw
N
. (2.13)

The vector, πML = {πML
1 , . . . , πML

L }, is the ML estimate of the SMN for a given

image.
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2.2.2 Robust estimation of SMNs

As is usual in probability estimation, these posterior probabilities can be

inaccurate for concepts with a small number of training images. Of particular

concern are cases where some of the πw are very close to zero, and can become

ill-conditioned when used for recognition problems, where noisy estimates are am-

plified by ratios or logs of probabilities. A common solution is to introduce a prior

distribution to regularize these parameters. Regularization can then be enforced

by adopting a Bayesian parameter estimation viewpoint, where the parameter π is

considered a random variable, and a prior distribution PΠ(π) introduced to favor

parameter configurations that are, a priori, more likely.

Conjugate priors are frequently used, in Bayesian statistics [48], to estimate

parameters of distributions in the exponential family, as is the case of the multi-

nomial. They lead to a closed-form posterior (which is in the family of the prior),

and maximum aposteriori probability parameter estimates which are intuitive. The

conjugate prior of the multinomial is the Dirichlet distribution

π ∼ Dir(α) =
Γ
(

∑L
j αj

)

∏L
j=1 Γ(αj)

L
∏

j=1

π
αj−1
j , (2.14)

of hyper-parameters αi, and where Γ(.) is the Gamma function. Setting2 αi = α,

the maximum aposteriori probability estimates are

πposteriorw = arg max
πw

PT|Π(c1, . . . , cL|π)PΠ(π)

= arg max
πw

L
∏

j=1

π
cj
j

L
∏

j=1

πα−1
j

=
cw + α− 1

∑L
j=1(cj + α− 1)

. (2.15)

This is identical to the maximum likelihood estimates obtained from a sample

where each count is augmented by α − 1, i.e. where each image contains α − 1

more feature vectors from each concept. The addition of these vectors prevents

zero counts, regularizing π. As α increases, the multinomial distribution tends to

uniform.
2Different hyper-parameters could also be used for the different concepts.
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Noting, from (2.13), that cw = NπML
w , the regularized estimates of (2.15)

can be written as

πposteriorw =
πML
w + π0

∑L
j (π

ML
j + π0)

.

with π0 = α−1
N

.

2.2.3 SMNs as Posterior Probability Vector

The data processing theorem [88] advises against making hard decisions

until the very last stages of processing. This suggests that thresholding the indi-

vidual feature vector posteriors and counting is likely to produce worse probability

estimates than those obtained without any thresholding. Motivated by the above

argument, it is worth considering an alternative procedure for the estimation of

πw. Instead of (2.13), this consists of equating the semantic features πw directly

with the posterior probability of the wth semantic concept given the entire image,

i.e.

πdirectw = PW |X(w|I) (2.16)

Thus, while in (2.13), posterior probability vector for each feature vector is thresh-

old and aggregated over the entire image, in (2.16) the posterior probability vector

is computed directly from the entire collection of the feature vectors. Thus, given

an image I = {x1, . . . ,xN} the vector of posterior probabilities

πdirect = (PW |X(1|I), . . . , PW |X(L|I))T (2.17)

provides a rich description of the image semantics and a robust alternative to

the estimation of its SMN. Furthermore, regularized estimates of (2.17) can be

obtained with

πregw =
πdirectw + π0

1 + Lπ0

(2.18)

which is equivalent to using maximum aposteriori probability estimates, in the

thresholding plus counting paradigm, with the Dirichlet prior of (2.14). In this

work we rely on (2.18) to obtain a SMN of a given image.
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Figure 2.4: SMN for the image shown on the top left computed using (top-right)

(2.8), (bottom-left) (2.21) and (bottom-right) (2.23).

2.3 Computing the Semantic Multinomial

It should be noted that the architecture proposed above is generic, in the

sense that any appearance recognition system that produces a vector of posterior

probabilities π, can be used to learn the proposed contextual models. In fact,

these probabilities can even be produced by systems that do not model appear-

ance explicitly, e.g. multi-class logistic regression, multi-class SVM etc. This is

achieved by converting classifier scores to a posterior probability distribution, us-

ing probability calibration techniques. For example, the distance from the decision

hyperplane learned by an SVM can be converted to a posterior probability using a

sigmoidal transform [110]. In practice, however, care must be taken to guarantee

that the appearance classifiers are not too strong. If they make very hard decisions,

e.g. assign images to a single class, the SMN would simply indicate the presence of

a single concept and would not be rich enough to build visual recognition systems.

Infact, in Chapter 5 we use multi-class logistic regression to compute the SMNs.

In the MPE implementation above, it is natural to use the posterior prob-

abilities of (2.18) as the SMN of image I. However, as N tends to be large, there
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(a) (b)

Figure 2.5: Alternative generative models for image formation at the appearance

level. (a) A concept is sampled per appearance feature vector rather than per

image, from PX|W (x|w). (b) Explicit modeling of the contextual variable Π from

which a single SMN is drawn per image.

Table 2.1: SMN Entropy.

Model Entropy

Figure 2.1, Eq (2.8) 0.003 ± 0.044

Figure 2.5(a), Eq (2.21) 2.530 ± 0.435

Figure 2.5(b), Eq (2.23) 2.546 ± 0.593

is usually very strong evidence in favor of one concept, not always that of greatest

perceptual significance. For example, if the image has a large region of “sky”, the

existence of many sky patches makes the posterior probability of the “sky” concept

close to one. This is illustrated in Figure 2.4 (top-right) where the SMN assigns

all probability to a single concept. Table 2.1 shows that this happens frequently:

the average entropy of the SMNs computed on the N15 Dataset (to be introduced

later) is very close to 0. Note that this is the property that enables the learn-

ing of the appearance based models from the weakly supervised datasets: when

all images containing “sky” are grouped, the overall feature distribution is very

close to that of the “sky” concept, despite the fact that the training set contains

spurious image patches from other concepts. This is an example of the multiple

instance learning paradigm [155], where an image, consisting of some patches from

the concept being modeled and some spurious patches from other concepts, serves

as the positive bag. Although this dominance of the strongest concept is critical

for learning, the data processing theorem advises against it during inference. Or,

in other words, while multiple instance learning is required, multiple instance in-
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ference is undesirable. In particular, modeling images as bags-of-features from a

single concept , as in Figure 2.1, does not lend to contextual inference.

One alternative is to perform inference with the much looser model of Figure

2.5(a), where a concept is sampled per appearance feature vector , rather than per

image. Note that, because labeling information is not available per vector, the

models PX|W (x|w) are still learned as before, using the multiple instance learning

principle. The only difference is the inference procedure. In this case, SMNs

are available per image patch denoted as patch-SMN, πn = PW |X(wn|xn), n ∈
{1, . . . , N}. Determining an SMN, denoted the Image-SMN, for the entire image

requires computing a representative for this set of patch-SMNs. One possibility is

the multinomial of minimum average Kullback-Leibler divergence with all patch-

SMNs

π∗ = arg min
π

1

N

N
∑

n=1

KL(π||πn) s.t
L
∑

i=1

πi = 1. (2.19)

As shown in Appendix C, this is the representative

π∗
i =

exp 1
N

∑

n log πni
∑

i exp 1
N

∑

n log πni
, (2.20)

which reduces to

π∗
i =

exp
{

1
n

∑

n logPX|W (xn|i)
}

∑

j exp
{

1
n

∑

n logPX|W (xn|j)
} (2.21)

for a uniform prior. This is in contrast to the posterior estimate of (2.8). Note

that while (2.8) computes a product of likelihoods, (2.21) computes their geometric

mean.

A second possibility is to adopt the generative model of Figure 2.5(b). This

explicitly accounts for the contextual variable Π, from which a single SMN is drawn

per image. A concept is then drawn per image patch. In this case, the Image-SMN

is

π∗ = arg max
π

PΠ|X(π|I). (2.22)

However, this optimization is intractable, and only approximate inference is pos-

sible. A number of approximations can be used, including Laplace or variational



28

approximations, sampling, etc. In Appendix D we show that, for a variational

approximation,

π∗
i =

γi − 1
∑

j γj − L
(2.23)

where, γi is computed with the following iteration,

γ∗i =
∑

n

φni + αi (2.24)

φ∗
ni ∝ PX|W (xn|wn = i) eψ(γi)−ψ(

P

j γj). (2.25)

Here, αi is the parameter of the prior PΠ(π) which, for compatibility with the

assumption of uniform class priors, we set to 1, ψ(·) the Digamma function, and

γi, φni the parameters of the variational distributions. Figure 2.4 shows that the

SMNs obtained with (2.21) and (2.23) are rich in contextual information. Table 2.1

shows that the two models lead to approximately the same average SMN entropy

on N15, which is much higher than that of (2.8).

Since (2.23) involves an iterative procedure, which is more expensive than

the closed form of (2.21), (2.21) is the default choice for computing the SMNs

in this work. In Chapter 6 we will show that (2.21) also yield marginally better

performance over (2.23), in a scene classification task.

2.4 Related Work

The idea of representing documents as weighted combinations of the words

in a pre-defined vocabulary is commonly used in information retrieval. In fact, the

classic model for information retrieval is the vector space model of Salton [125, 126].

Under this model, documents are represented as collections of keywords, weighted

by importance, and can be interpreted as points in the semantic space spanned

by the vocabulary entries. In image retrieval, there have been some proposals to

represent images as points in a semantic vector space. The earliest among these

efforts [68, 54] were based on semantic information extracted from metadata -

viz. origin, filename, image url, keywords from surrounding webpage text, manual

annotations, etc.
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The closest works, in the literature, to the semantic image representation

proposed here, are the systems proposed by Smith et al. in [137, 135] and Lu

et al. in [86]. To the best of our knowledge, [137] pioneered the idea of learn-

ing a semantic space by learning a separate statistical model for each concept.

The vector of semantic weights, denoted as the ‘model vector’, is learned from

the image content. Each image receives a confidence score per semantic concept,

based on the proximity of the image to the decision boundary of a support vector

machine (SVM) trained to recognize the concept. While laying the foundations

for the semantic image representation, [137] does not present any formal defini-

tion or systematic analysis of the semantic image representation, as presented in

Section 2.2. Moreover in [137], the model vector is used solely for the task of

retrieving images known to the system (that were used to learn the SVM clas-

sifiers). In Chapter 3 we show that the benefits of semantic representation goes

beyond that, and propose image retrieval systems that can generalize well beyond

the known vocabulary. Furthermore, we present two novel visual recognition sys-

tems, viz. scene classification and cross-modal multimedia retrieval based on the

semantic image representation. Infact, the problem of cross-modal multimedia is

itself in its nascency and no formal analysis has been presented in the literature,

which we do in Chapter 5. Finally, in [137] the model vector is simply used as

an alternative image representation, without any analysis of their ability to model

semantic “gist” and context of an image. In Chapter 6 we introduce “contextual

models” and show that the proposed representation is successful in modeling the

“gist” of an image.
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