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5.1 Introduction

Over the last decade there has been a massive explosion of multimedia con-

tent on the web. This explosion has not been matched by an equivalent increase in

the sophistication of multimedia content modeling technology. Today, the prevail-

ing tools for searching multimedia repositories are still uni-modal in nature. Text

repositories are searched with text queries, image databases with image queries,

and so forth. To address this problem, the academic community has devoted itself

to the design of models that can account for multi-modal data, i.e. data with multi-

ple content modalities. Recently, there has been a surge of interest in multi-modal

modeling, representation, and retrieval [106, 148, 132, 138, 28, 60, 31]. Multi-modal

retrieval relies on queries combining multiple content modalities (e.g. the images

and sound of a music video-clip) to retrieve database entries with the same combi-

nation of modalities (e.g. other music video-clips). These efforts have, in part, been

spurred by a variety of large-scale research and evaluation experiments, such as

TRECVID [132] and ImageCLEF [106, 148], involving datasets that span multiple

data modalities. However, much of this work has focused on the straightforward

extension of methods shown successful in the uni-modal scenario. Typically, the

different modalities are fused into a representation that does not allow individual

access to any of them, e.g. some form of dimensionality reduction of a large feature

vector that concatenates measurements from images and text. Classical uni-modal

techniques are then applied to the low-dimensional representation. This limits the

applicability of the resulting multimedia models and retrieval systems.

An important requirement for further progress in these areas is the develop-

ment of sophisticated joint models for multiple content modalities. In this chapter,

we consider a richer interaction paradigm, which is denoted cross-modal retrieval.

The goal is to build multi-modal content models that enable interactivity with

content across modalities. Such models can then be used to design cross-modal

retrieval systems, where queries from one modality (e.g. video) can be matched

to database entries from another (e.g., the best accompanying audio-track). This

form of retrieval can be seen as a generalization of current content labeling sys-

tems, where one dominant modality is augmented with simple information from
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another, which can be subsequently searched. Examples include keyword-based

image [4, 97, 21] and song [151, 149, 89, 36] retrieval systems. One property of

cross-modal retrieval is that, by definition, it requires representations that gener-

alize across content modalities. This implies the ability to establish cross-modal

links between the attributes (of different modalities) characteristic of each doc-

ument, or document class. Detecting these links requires much deeper content

understanding than the classical matching of uni-modal attributes. For example,

while an image retrieval system can retrieve images of roses by matching red blobs,

and a text retrieval system can retrieve texts about roses by matching the “rose”

word, a cross-modal retrieval system must abstract that the word “rose” matches

the visual attribute “red blob”. This is much closer to what humans do than

simple color or word matching. Hence, cross-modal retrieval is a better context

than uni-modal retrieval for the study of fundamental hypotheses on multimedia

modeling.

We exploit this property to study two hypotheses on the joint modeling

of images and text. The first, denoted the correlation hypothesis, is that explicit

modeling of low-level correlations between the different modalities is of importance

for the success of the joint models. The second, denoted the abstraction hypothesis,

is that the modeling benefits from semantic abstraction, i.e., the representation of

images and text in terms of semantic (rather than low-level) descriptors. These

hypotheses are partly motivated by previous evidence that correlation, e.g., cor-

relation analysis on fMRI [55], and abstraction, e.g., hierarchical topic models for

text clustering [14] or semantic representations for image retrieval(see Chapter 3),

improve performance on uni-modal retrieval tasks. Three joint image-text models

that exploit low-level correlation, denoted correlation matching , semantic abstrac-

tion, denoted semantic matching , and both, denoted semantic correlation match-

ing , are introduced. Both semantic matching and semantic correlation matching

build upon the proposed semantic image representation (see Chapter 2).

The hypotheses are tested by measuring the retrieval performance of these

models on two reciprocal cross-modal retrieval tasks: 1) the retrieval of text doc-

uments in response to a query image, and 2) the retrieval of images in response
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to a query text. These are basic cross-modal retrieval problems, central to many

applications of practical interest, such as finding pictures that effectively illustrate

a given text (e.g., to illustrate a page of a story book), finding the texts that best

match a given picture (e.g., a set of vacation accounts about a given landmark),

or searching using a combination of text and images. Model performance on these

tasks is evaluated with two datasets: TVGraz [66] and a novel dataset based on

Wikipedia’s featured articles. These experiments show independent benefits to

both correlation modeling and abstraction. In particular, best results are obtained

by a model that accounts for both low-level correlations — by performing a kernel

canonical correlation analysis (KCCA) [127, 163] — and semantic abstraction —

by projecting images and texts into a common semantic space (see Chapter 2) de-

signed with logistic regression. This suggests that the abstraction and correlation

hypotheses are complementary, each improving the modeling in a different manner.

Individually, the gains of abstraction are larger than those of correlation modeling.

This chapter is organized as follows. Section 5.2 discusses previous work in

multi-modal and cross-modal multimedia modeling. Section 5.3 presents a math-

ematical formulation for cross-modal modeling and discusses the two fundamental

hypotheses analyzed in this work. Section 5.4 introduces the models underlying

correlation, semantic, and semantic correlation matching. Section 5.5 discusses

the experimental setup used to evaluate the hypotheses. Model validation and

parameter tuning are detailed in Section 5.6. The hypotheses are finally tested in

Section 5.7.

5.2 Previous Work

The problems of image and text retrieval have been the subject of ex-

tensive research in the fields of information retrieval, computer vision, and mul-

timedia [28, 133, 132, 106, 93]. In all these areas, the emphasis has been on

uni-modal approaches, where query and retrieved documents share a single modal-

ity [125, 124, 156, 28, 133]. For example, in [124], a query text and in [156], a query

image is used to retrieve similar text documents and images, based on low-level



81

text (e.g., words) and image (e.g., DCTs) representations, respectively. However,

this is not effective for all problems. For example, the existence of a well known

semantic gap, (see Chapter 1) between current image representations and those

adopted by humans, severely limits the performance of uni-modal image retrieval

systems [133](see Chapter 3).

In general, successful retrieval from large-scale image collections requires

that the latter be augmented with text metadata provided by human annota-

tors. These manual annotations are typically in the form of a few keywords, a

small caption, or a brief image description [106, 148, 132]. When this metadata

is available, the retrieval operation tends to be uni-modal and ignore the images

— the text metadata of the query image is simply matched to the text metadata

available for images in the database. Because manual image labeling is labor-

intensive, recent research has addressed the problem of automatic image labeling

1 [21, 63, 41, 73, 96, 4]. As we saw in Chapter 2, rather than labeling images with

a small set of most relevant semantic concepts, images can be represented as a

weighted combination of all concepts in the vocabulary, by projecting them into a

semantic space, where each dimension is a semantic concept. Semantic space was

used for uni-modal image retrieval in Chapter 3, which enabled retrieval of im-

ages using semantic similarity — by combining the semantic space with a suitable

similarity function.

In parallel, advances have been reported in the area of multi-modal retrieval

systems [106, 148, 132, 138, 28, 60, 31]. These are extensions of the classic uni-

modal systems, where a common retrieval system integrates information from var-

ious modalities. This can be done by fusing features from different modalities into

a single vector [171, 108, 37], or by learning different models for different modali-

ties and fusing their predictions [168, 69]. One popular approach is to concatenate

features from different modalities into a common vector and rely on unsupervised

structure discovery algorithms, such as latent semantic analysis (LSA), to find

statistical patterns that span the different modalities. A good overview of these

methods is given in [37], which also discusses the combination of uni-modal and

1Although not commonly perceived as being cross-modal, these systems support cross-modal
retrieval, e.g., by returning images in response to explicit text queries.
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multi-modal retrieval systems. Multi-modal integration has also been applied to

retrieval tasks including audio-visual content [99, 44]. In general, the inability to

access each data modality individually (after the fusion of modalities) limits the

applicability of these systems to cross-modal retrieval.

Recently, there has been progress towards multi-modal systems that do not

suffer from this limitation. These include retrieval methods for corpora of images

and text [31], images and audio [178, 76], text and audio [131], or images, text,

and audio [175, 178, 182, 181, 176]. One popular approach is to rely on graph-

based manifold learning techniques [175, 178, 182, 181, 176]. These methods learn

a manifold from a matrix of distances between multi-modal objects. The multi-

modal distances are formulated as a function of the distances between individual

modalities, which allows to single out particular modalities or ignore missing ones.

Retrieval then consists of finding the nearest document, on the manifold, to a

multimedia query (which can be composed of any subset of modalities). The main

limitation of methods in this class is the lack of out-of-sample generalization. Since

there is no computationally efficient way to project the query into the manifold,

queries are restricted to the training set used to learn the latter. Hence, all unseen

queries must be mapped to their nearest neighbors in this training set, defeating

the purpose of manifold learning. An alternative solution is to learn correlations

between different modalities [76, 178, 164]. For example, [76] compares canonical

correlation analysis (CCA) and cross-modal factor analysis (CFA) in the context

of audio-image retrieval. Both CCA and CFA perform a joint dimensionality re-

duction that extracts highly correlated features in the two data modalities. A

kernelized version of CCA was also proposed in [164] to extract translation invari-

ant semantics of text documents written in multiple languages. It was later used

to model correlations between web images and corresponding captions, in [55].

Despite these advances in multi-modal modeling, current approaches tend

to rely on a limited textual representation, in the form of keywords, captions, or

small text snippets. We refer to all of these as forms of light annotation. This

is at odds with the ongoing explosion of multimedia content on the web, where

it is now possible to collect large sets of extensively annotated data. Examples
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(a)

Martin Luther King’s presence in Birmingham was not welcomed by all in the

black community. A black attorney was quoted in ”Time” magazine as saying,

”The new administration should have been given a chance to confer with the

various groups interested in change.” Black hotel owner A. G. Gaston stated, ”I

regret the absence of continued communication between white and Negro lead-

ership in our city.” A white Jesuit priest assisting in desegregation negotiations

attested, ”These demonstrations are poorly timed and misdirected.” Protest

organizers knew they would meet with violence from the Birmingham Police

Department but chose a confrontational approach to get the attention of the

federal government. Reverend Wyatt Tee Walker, one of the SCLC founders and

the executive director from 19601964, planned the tactics of the direct action

protests, specifically targeting Bull Connor’s tendency to react to demonstra-

tions with violence. ”My theory was that if we mounted a strong nonviolent

movement, the opposition would surely do something to attract the media, and

in turn induce national sympathy and attention to the everyday segregated

circumstance of a person living in the Deep South,” Walker said. He headed

the planning of what he called Project C, which stood for ”confrontation”.

According to this historians Isserman and Kazin, the demands on the city au-

thorities were straightforward: desegregate the economic life of Birmingham its

restaurants, hotels, public toilets, and the unwritten policy of hiring blacks for

menial jobs only Maurice Isserman and Michael Kazin, America Divided: The

Civil War of the 1960s, (Oxford, 2008), p.90. (...)

Home - Courses - Brain and Cognitive Sciences - A Clinical Approach to the Hu-

man Brain 9.22J / HST.422J A Clinical Approach to the Human Brain Fall 2006

Activity in the highlighted areas in the prefrontal cortex may affect the level of

dopamine in the mid-brain, in a finding that has implications for schizophrenia.

(Image courtesy of the National Institutes of Mental Health.) Course Highlights

This course features summaries of each class in the lecture notes section, as well

as an extensive set of readings. Course Description This course is designed to

provide an understanding of how the human brain works in health and dis-

ease, and is intended for both the Brain and Cognitive Sciences major and the

non-Brain and Cognitive Sciences major. Knowledge of how the human brain

works is important for all citizens, and the lessons to be learned have enormous

implications for public policy makers and educators. The course will cover the

regional anatomy of the brain and provide an introduction to the cellular func-

tion of neurons, synapses and neurotransmitters. Commonly used drugs that

alter brain function can be understood through a knowledge of neurotransmit-

ters. Along similar lines, common diseases that illustrate normal brain function

will be discussed. Experimental animal studies that reveal how the brain works

will be reviewed. Throughout the seminar we will discuss clinical cases from

Dr. Byrne’s experience that illustrate brain function; in addition, articles from

the scientific literature will be discussed in each class. (...)

(b)

Figure 5.1: Two examples of image-text pairs: (a) section from the Wikipedia

article on the Birmingham campaign (“History” category), (b) part of a Cognitive

Science class syllabus from the TVGraz dataset (“Brain” category).
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include news archives, blog posts, or Wikipedia pages, where pictures are related to

complete text articles, not just a few keywords. We refer to these datasets as richly

annotated . While potentially more informative, rich annotation establishes a much

more nuanced connection between images and text than that of light annotation.

Indeed, keywords usually are explicit image labels and, therefore, clearly relate to

it, while many of the words in rich text may be unrelated to the image used to

illustrate it. For example, Figure 5.1a shows a section of the Wikipedia article

on the “Birmingham campaign”, along with the associated image. Notice that,

although related to the text, the image is clearly not representative of all the

words in the article. The same is true for the web-page in Figure 5.1b, from the

TVGraz dataset [66] (see Appendix A for more details on both Wikipedia and

TVGraz datasets). This is a course syllabus that, beyond the pictured brain,

includes course information and other unrelated matters. A major long-term goal

of modeling richly annotated data is to recover this latent relationship between the

text and image components of a document, and exploit it in benefit of practical

applications.

5.3 Fundamental Hypotheses

In this section, we present a novel multi-modal content modeling frame-

work, which is flexible and applicable to rich content modalities. Although the

fundamental ideas are applicable to any combination of modalities we restrict the

discussion to documents containing images and text.

5.3.1 The problem

We consider the problem of information retrieval from a database B =

{D1, . . . , D|B|} of documents comprising image and text components. In practice,

these documents can be quite diverse: from documents where a single text is

complemented by one or more images (e.g., a newspaper article) to documents

containing multiple pictures and text sections (e.g., a Wikipedia page). For sim-

plicity, we consider the case where each document consists of a single image and its
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Figure 5.2: Each document (Di) consists of an image (Ii) and accompanying text

(Ti), i.e., Di = (Ii, Ti), which are represented as vectors in feature spaces <I and

<T , respectively. Documents establish a one-to-one mapping between points in <I

and <T .

accompanying text, i.e., Di = (Ii, Ti). Images and text are represented as vectors

in feature spaces <I and <T respectively2, as illustrated in Figure 5.2, documents

establish a one-to-one mapping between points in <I and <T . Given a text (image)

query Tq ∈ <T (Iq ∈ <I), the goal of cross-modal retrieval is to return the closest

match in the image (text) space <I (<T ).

5.3.2 Multi-modal modeling

Whenever the image and text spaces have a natural correspondence, cross-

modal retrieval reduces to a classical retrieval problem. Let

M : <T → <I

be an invertible mapping between the two spaces. Given a query Tq in <T , it

suffices to find the nearest neighbor to M(Tq) in <I . Similarly, given a query Iq

in <I , it suffices to find the nearest neighbor to M−1(Iq) in <T . In this case,

2Note that, in this chapter we deviate from the standard representation of an image (adopted
in this work) as a bag of N feature vectors, I = {x1, . . . ,xN},xi ∈ X , to one where an image is
represented as a vector in <I . The motivation is to maintain a simple and consistent represen-
tation across all different modalities. See Section 2.1.1 for a brief description on mapping images
from XN to <I
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the design of a cross-modal retrieval system reduces to the design of an effective

similarity function for determining the nearest neighbors.

In general, however, different representations are adopted for images and

text, and there is no natural correspondence between <I and <T . In this case,

the mapping M has to be learned from examples. In this work, we map the two

representations into intermediate spaces, V I and VT , that have a natural corre-

spondence. First, consider learning invertible mappings

MI : <I → VI MT : <T → VT

from each of the image and text spaces to two isomorphic spaces V I and VT , such

that there is an invertible mapping

M : VT → VI

between these two spaces. In this case, given a text query Tq in <T , cross-modal

retrieval reduces to finding the nearest neighbor of

M−1
I ◦M ◦MT (Tq)

in <I . Similarly, given an image query Iq in <I , the goal is to find the nearest

neighbor of

M−1
T ◦M−1 ◦MI(Iq)

in <T . This formulation can be generalized to learning non-invertible mappings

MI and MT by seeking the nearest neighbors of M◦MT (Tq) and M−1 ◦MI(Iq)

in the intermediate spaces VI and VT , respectively, and matching them up with

the corresponding image and text, in <I and <T . Under this formulation, followed

in this work, the main problem in the design of a cross-modal retrieval system is

the design of the intermediate spaces VI and VT (and the corresponding mappings

MI and MT ).

5.3.3 The fundamental hypotheses

Since the goal is to design representations that generalize across content

modalities, the solution of this problem requires some ability to derive a more
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Figure 5.3: Correlation matching (CM) performs joint feature selection in the

text and image spaces, projecting them onto two maximally correlated subspaces

UT and UI .

abstract representation than the sum of the parts (low-level features) extracted

from each content modality. Given that such abstraction is the hallmark of true

image or text understanding, this problem enables the exploration of some central

questions in multimedia modeling. Considering a query for “swan” 1) a uni-modal

image retrieval system can successfully retrieve images of “swans” in that they are

the only white objects in a database, 2) a text retrieval system can successfully

retrieve documents about “swans” because they are the only documents containing

the word “swan”, and 3) a multi-modal retrieval system can just match “white”

to “white” and “swan” to “swan”, a cross-modal retrieval system cannot solve the

task without abstracting that “white is a visual attribute of swan”. Hence, cross-

modal retrieval is a more effective paradigm for testing fundamental hypotheses in

multimedia representation than uni-modal or multi-modal retrieval. In this work,

we exploit the cross-modal retrieval problem to test two such hypotheses regarding

the joint modeling of images and text.

• H1 (correlation hypothesis): low-level cross-modal correlations are impor-

tant for joint image-text modeling.

• H2 (abstraction hypothesis): semantic abstraction is important for joint

image-text modeling.

The hypotheses are tested by comparing three possibilities for the design of

the intermediate spaces VI and VT of cross-modal retrieval. In the first case, two
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Table 5.1: Taxonomy of the proposed approaches to cross-modal retrieval.

correlation hypothesis abstraction hypothesis

CM
√

SM
√

SCM
√ √

feature transformations map <I and <T onto correlated d-dimensional subspaces

denoted as U I and UT , respectively, which act as VI and VT . This maintains the

level of semantic abstraction of the representation while maximizing the correla-

tion between the two spaces. We refer to this matching technique as correlation

matching (CM). In the second case, a pair of transformations are used to map the

image and text spaces into a pair of semantic spaces SI and ST , which then act

as VI and VT . This increases the semantic abstraction of the representation with-

out directly seeking correlation maximization. The spaces SI and ST are made

isomorphic by using the same set of semantic concepts for both modalities. We

refer to this as semantic matching (SM). Finally, a third approach combines the

previous two techniques: project onto maximally correlated subspaces U I and UT ,

and then project again onto a pair of semantic spaces SI and ST , which act as VI

and VT . We refer to this as semantic correlation matching (SCM).

5.1 summarizes which hypotheses hold for each of the three approaches.

The comparative evaluation of the performance of these approaches on cross-modal

retrieval experiments provides indirect evidence for the importance of the above

hypotheses to the joint modeling of images and text. The intuition is that a better

cross-modal retrieval performance results from a more effective joint modeling.

5.4 Cross-modal Retrieval

In this section, we present each of the three approaches in detail.
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5.4.1 Correlation matching (CM)

The design of a mapping from <T and <I to the correlated spaces UT and

U I requires a combination of dimensionality reduction and some measure of corre-

lation between the text and image modalities. In both text and vision literatures,

dimensionality reduction is frequently accomplished with methods such as latent

semantic indexing (LSI) [29] and principal component analysis (PCA) [64]. These

are members of a broader class of learning algorithms, denoted subspace learn-

ing, which are computationally efficient, and produce linear transformations that

are easy to conceptualize, implement, and deploy. Furthermore, because subspace

learning is usually based on second order statistics, such as correlation, it can be

easily extended to the multi-modal setting and kernelized. This has motivated

the introduction of a number of multi-modal subspace methods in the literature.

In this work, we consider cross-modal factor analysis (CFA), canonical correla-

tion analysis (CCA), and kernel canonical correlation analysis (KCCA). All these

methods include a training stage, where the subspaces U I and UT are learned, fol-

lowed by a projection stage, where images and text are projected into these spaces.

Figure 5.3 illustrates this process. Cross-modal retrieval is finally performed within

the low-dimensional subspaces.

Linear subspace learning

CFA seeks transformations that best represent coupled patterns between

different subsets of features (e.g., different modalities) describing the same ob-

jects [76]. It finds the orthonormal transformations ΩI and ΩT that project the

two modalities onto a shared space, U I = UT = U , where the projections have

minimum distance
∥

∥XIΩI −XTΩT

∥

∥

2

F
. (5.1)

XI and XT are matrices containing corresponding features from the image and

text domains, and || · ||2F is the Frobenius norm. It can be shown that this is

equivalent to maximizing

trace(XIΩIΩ
′
TX

′
T ), (5.2)
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and the optimal matrices ΩI ,ΩT can be obtained by a singular value decomposition

of the matrix X ′
IXT , i.e.,

X ′
IXT = ΩIΛΩT , (5.3)

where Λ is the matrix of singular values of X ′
IXT [76].

CCA [59] learns the d-dimensional subspaces U I ⊂ <I (image) and UT ⊂ <T

(text) where the correlation between the two data modalities is maximal. It is

similar to principal components analysis (PCA), in the sense that it learns a basis

of canonical components, directions wi ∈ <I and wt ∈ <T , but seeks directions

along which the data is maximally correlated

max
wi 6=0, wt 6=0

w′
iΣITwt

√

w′
iΣIwi

√

w′
tΣTwt

(5.4)

where ΣI and ΣT are the empirical covariance matrices for images {I1, . . . , I|D|}
and text {T1, . . . , T|D|} respectively, and ΣIT = Σ′

TI the cross-covariance between

them. Repetitively solving (5.4), for directions that are orthogonal to all previ-

ously obtained solutions, provides a series of canonical components. It can be

shown that the canonical components in the image space can be found as the

eigenvectors of Σ
−1/2
I ΣITΣ−1

T ΣTIΣ
−1/2
I , and in the text space as the eigenvectors of

Σ
−1/2
T ΣTIΣ

−1
I ΣITΣ

−1/2
T . The first d eigenvectors {wi,k}dk=1 and {wt,k}dk=1 define a

basis of the subspaces U I and UT .

Non-linear subspace learning

CCA and CFA can only model linear dependencies between image and text

features. This limitation can be avoided by mapping these features into high-

dimensional spaces, with a pair of non-linear transformations φT : <T → FT

and φI : <I → F I. Application of CFA or CCA in these spaces can then re-

cover complex patterns of dependency in the original feature space. As is com-

mon in machine learning, the transformations φT (·) and φI(·) are computed only

implicitly, by the introduction of two kernel functions KT (·, ·) and KI(·, ·), speci-

fying the inner products in FT and F I , i.e., KT (Tm, Tn) = 〈φT (Tm), φT (Tn)〉 and

KI(Im, In) = 〈φI(Im), φI(In)〉, respectively.
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KCCA [127, 163] implements this type of extension for CCA, seeking di-

rections wi ∈ F I and wt ∈ FT , along which the two modalities are maximally

correlated in the transformed spaces. The canonical components can be found by

solving

max
αi 6=0, αt 6=0

α′
iKIKTαt

V (αi, KI)V (αt, KT )
, (5.5)

where V (α,K) =
√

(1 − κ)α′K2α + κα′Kα, κ ∈ [0, 1] is a regularization pa-

rameter, and KI and KT are the kernel matrices of the image and text repre-

sentations, e.g., (KI)mn = KI(Im, In). Given optimal αi and αt for (5.5), wi

and wt are obtained as linear combinations of the training examples {φI(Ik)}|B|k=1,

and {φT (Tk)}|B|k=1, with αi and αt as weight vectors, i.e., wi = ΦI(XI)
Tαi and

wt = ΦT (XT )Tαt, where ΦI(XI) (ΦT (XT )) is the matrix whose rows contain the

high-dimensional representation of the image (text) features. To optimize (5.5),

we solve a generalized eigenvalue problem using the software package of [163].

The first d generalized eigenvectors provide us with d weight vectors {αi,k}dk=1

and {αt,k}dk=1, from which bases, {wi,k}dk=1 and {wt,k}dk=1, of the two maximally

correlated d-dimensional subspaces U I ⊂ F I and UT ⊂ FT can be derived, with

1 ≤ d ≤ |B|.

Image and text projections

Images and text are represented by their projections pI and pT onto the

subspaces U I and UT , respectively. pI (pT ) is obtained by computing the dot-

products between the vector representing the image (text) I ∈ <I (T ∈ <T ) and

the image (text) basis vectors spanning U I (UT ). For CFA, the basis vectors are the

columns of ΩI and ΩT , respectively. For CCA, they are {wi,k}dk=1 and {wt,k}dk=1.

In the case of KCCA, an image I ∈ <I is first mapped into F I and subsequently

projected onto {wi,k}dk=1, i.e., pI = PI(φI(I)) with

pI,k = 〈φI(I), wi,k〉
= 〈φI(I),

[

φI(I1), . . . , φI(I|B|)
]

αi,k〉
=

[

KI (I, I1) , . . . , KI

(

I, I|B|
)]

αi,k,

(5.6)
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Figure 5.4: Cross-modal retrieval using CM. Here, CM is used to find the images

that best match a query text.

where k = 1, . . . , d. Analogously, a text T ∈ <T is mapped into FT and then

projected onto {wt,k}dk=1, i.e., pT = PT (φT (T )), using KT (. , .).

Correlation matching

For all methods, a natural invertible mapping between the projections onto

U I and UT follows from the correspondence between the d-dimensional bases of

the subspaces, as wi,1 ↔ wt,1, ..., wi,d ↔ wt,d. This results in a compact, efficient

representation of both modalities, where vectors pI and pT are coordinates in two

isomorphic d-dimensional subspaces, as shown in Figure 5.3. Given an image query

I with projection pI , the text T ∈ <T that most closely matches it is that for which

pT minimizes

D(I, T ) = d(pI, pT ), (5.7)

for some suitable distance measure d(·, ·) in a d-dimensional vector space. Similarly,

given a query text T with projection pT , the closest image match I ∈ <I is that for

which pI minimizes d(pI , pT ). An illustration of cross-modal retrieval using CM is

given in Figure 5.4.

5.4.2 Semantic matching (SM)

An alternative to subspace learning is to map images and text to repre-

sentations at a higher level of abstraction, where a natural correspondence can be

established. This is obtained by augmenting the database B with a vocabulary
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Figure 5.5: Semantic matching (SM) maps text and images into a semantic space.

For each modality, classifiers are used to obtain a semantic representation, i.e., a

weight vector over semantic concepts.

L = {1, . . . , L} of semantic concepts, such as “History” or “Biology”. Individual

documents are grouped into these classes. Two mappings ΠT and ΠI are then

implemented using classifiers of text and images, respectively. ΠT maps a text

T ∈ <T into a vector πT of posterior probabilities PW |T (w|T ), w ∈ {1, . . . , L} with

respect to each of the classes in L. The space ST of these vectors is referred to as

the semantic space for text , and the probabilities PW |T (w|T ) as semantic text fea-

tures. Similarly, ΠI maps an image I into a vector πI of semantic image features

PW |I(w|I), w ∈ {1, . . . , L} in a semantic space for images SI .
Semantic representations have two advantages for cross-modal retrieval.

First, they provide a higher level of abstraction. While standard features in <T

and <I are the result of unsupervised learning, and frequently have no obvious in-

terpretation (e.g., image features tend to be edges, edge orientations or frequency

bases), the features in ST and SI are semantic concept probabilities (e.g., the prob-

ability that the image belongs to the “History” or “Biology” document classes).

In Chapter 3, it was shown that this increased semantic abstraction can lead to

substantially better generalization for tasks such as image retrieval. Second, the

semantic spaces ST and SI are isomorphic, since both images and text are rep-

resented as vectors of posterior probabilities with respect to the same document

classes. Hence, the spaces can be treated as being the same, i.e., ST = SI , leading

to the schematic representation in Figure 5.5.
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Figure 5.6: Cross-modal retrieval using SM used to find the text that best matches

a query image.

In Chapter 2, it was highlighted that it is not necessary to model each class

explicitly and any system that computes posterior probabilities can be employed

to obtain the semantic representation. For the evaluation of cross-modal retrieval

systems, the posterior probability distributions are computed through multi-class

logistic regression which produces linear classifiers with a probabilistic interpreta-

tion. Logistic regression based classification is chosen due to its simplicity. Under

this, the posterior probability of class w is computed, by fitting the image (text)

features to a logistic function,

PW |X(w|x; β) =
1

Z(x,β)
exp (βTwx), (5.8)

where Z(x,β) =
∑

w exp (βTwx) is a normalization constant, W the class label, X

the feature vector in the input space, and β = {β1, . . . , βL} with βw a vector of

parameters for class w. A multi-class logistic regression is learned for the image

and text modality, by making X the image and text representation, I ∈ <I and

T ∈ <T , respectively. In our implementation we use the software package Liblinear

[38]. Given a query image I (text T ), represented by πI ∈ SI (πT ∈ ST ), cross-

modal retrieval will find the text T (image I), represented by πT ∈ ST (πI ∈ SI),
that minimizes

D(I, T ) = d(πI, πT ), (5.9)
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for some suitable distance measure d between probability distributions. An illus-

tration of cross-modal retrieval using SM is given in Figure 5.6.

5.4.3 Semantic Correlation Matching (SCM)

CM and SM are not mutually exclusive. In fact, a corollary to the two hy-

potheses discussed above is that there may be a benefit in combining CM and SM.

CM extracts maximally correlated features from <T and <I . SM builds semantic

spaces using original features to gain semantic abstraction. When the two are

combined, by building semantic spaces using the feature representation produced

by correlation maximization, it may be possible to improve on the individual per-

formances of both CM and SM. To combine the two approaches, the maximally

correlated subspaces U I and UT are first learned with correlation modeling. Logis-

tic regressors ΠI and ΠT are then learned in each of these subspaces to produce

the semantic spaces SI and ST , respectively. Retrieval is finally based on the

image-text distance D(I, T ) of (5.9), based on the semantic mappings πI = ΠI(pI)

and πT = ΠT (pT ) after projecting them onto U I and UT , respectively.

5.5 Experimental Setup

In this section, we describe an extensive experimental evaluation of the pro-

posed framework. Two tasks were considered: text retrieval from an image query,

and image retrieval from a text query. The cross-modal retrieval performance is

measured with precision-recall (PR) curves and mean average precision (MAP)

scores. The standard 11-point interpolated PR curves [91] are used. The MAP

score is the average precision at the ranks where recall changes. Both metrics are

evaluated at the level of in- or out-of-category, which is a popular choice in the

information retrieval literature [119].

Dataset

For the evaluation of the cross-modal retrieval system we use two different

datasets, viz. TVGraz and Wikipedia. The TVGraz dataset is a collection of web-
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pages compiled by Khan et al. [66] and contains 2, 058 image-text pairs divided into

10 categories ( see Appendix A.1.5 for more details). Wikipedia is novel dataset

assembled from the “Wikipedia featured articles”, a continually updated collection

of Wikipedia articles, and contains a total of 2, 866 image-text pairs again divided

into 10 categories (see Appendix A.1.6 for more details)

The two datasets have important differences. TVGraz images are archety-

pal members of the categories, due to the collection procedure [66]. The dataset is

eminently visual, since its categories (e.g., “Harp”, “Dolphin”) are specific objects

or animals, and the classes are semantically well-separated, with little or no seman-

tic overlap. For example, the syllabus of a Neuroscience class can be attached to a

picture of a brain. However, the texts are small and can be less representative of

the categories to which they are associated. In Wikipedia, on the other hand, the

category membership is assessed based on text content. Hence, texts are mostly

of good quality and representative of the category, while the image categorization

is more ambiguous. For example, a portrait of a historical figure can appear in

the class “War”. The Wikipedia categories (e.g., “History”, “Biology”) are more

abstract concepts, and have much broader scope. Frequently, documents could be

classified into one or more categories. Individually, the images can be difficult to

classify, even for a human. Together, the two datasets represent an important sub-

set of the diversity of practical cross-modal retrieval scenarios: applications where

there is more uniformity of text than images, and vice-versa.

5.5.1 Image and text representation

For both modalities, the base representation is a bag-of-words (BOW) rep-

resentation. Text words were obtained by stemming the text with the Python

Natural Language Toolkit3. Direct word histograms were not suitable for text be-

cause the large lexicon made the correlation analysis intractable. Instead, a latent

Dirichlet allocation (LDA) [14] model was learned from the text features, using

the implementation of [32]. LDA summarizes a text as a mixture of topics. More

precisely, a text is modeled as a multinomial distribution over topics, each of which

3http://www.nltk.org/
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Table 5.2: Cross-modal retrieval performance (MAP) on the validation set using

different distance metrics for TVGraz. µp and µq are the sample averages for p

and q, respectively.

TVGraz

Experiment measure d(p, q) img query txt query avg

CM

`1
∑

i |pi − qi| 0.376 0.418 0.397

`2
∑

i(pi − qi)
2 0.391 0.444 0.417

NC pT q
||p|| ||q||

0.498 0.476 0.487

NCc
(p−µp)T (q−µq)
||p−µp|| ||q−µq||

0.486 0.462 0.474

SM

KL
∑

i pi log pi

qi
0.296 0.546 0.421

`1
∑

i |pi − qi| 0.412 0.548 0.480

`2
∑

i(pi − qi)
2 0.380 0.550 0.465

NC pT q
||p|| ||q||

0.533 0.560 0.546

NCc
(p−µp)T (q−µq)

||p−µp|| ||q−µq||
0.579 0.556 0.568

SCM

KL
∑

i pi log pi

qi
0.576 0.636 0.606

`1
∑

i |pi − qi| 0.637 0.645 0.641

`2
∑

i(pi − qi)
2 0.614 0.63 0.622

NC pT q
||p|| ||q||

0.669 0.646 0.658

NCc
(p−µp)T (q−µq)
||p−µp|| ||q−µq||

0.678 0.641 0.660
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Table 5.3: Cross-modal retrieval performance (MAP) on the validation set using

different distance metrics for Wikipedia. µp and µq are the sample averages for p

and q, respectively.

Wikipedia

Experiment measure d(p, q) img query txt query avg

CM

`1
∑

i |pi − qi| 0.193 0.234 0.214

`2
∑

i(pi − qi)
2 0.199 0.243 0.221

NC pT q
||p|| ||q||

0.288 0.239 0.263

NCc
(p−µp)T (q−µq)
||p−µp|| ||q−µq||

0.287 0.239 0.263

SM

KL
∑

i pi log pi

qi
0.188 0.276 0.232

`1
∑

i |pi − qi| 0.232 0.276 0.254

`2
∑

i(pi − qi)
2 0.211 0.278 0.245

NC pT q
||p|| ||q||

0.315 0.278 0.296

NCc
(p−µp)T (q−µq)

||p−µp|| ||q−µq||
0.354 0.272 0.313

SCM

KL
∑

i pi log pi

qi
0.287 0.282 0.285

`1
∑

i |pi − qi| 0.329 0.286 0.308

`2
∑

i(pi − qi)
2 0.307 0.286 0.296

NC pT q
||p|| ||q||

0.375 0.288 0.330

NCc
(p−µp)T (q−µq)
||p−µp|| ||q−µq||

0.388 0.285 0.337
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is in turn modeled as a multinomial distribution over words. Each word in a text

is generated by first sampling a topic from the text-specific topic distribution, and

then sampling a word from that topic’s multinomial. This serves two purposes: it

reduces dimensionality and increases feature abstraction, by representing text as a

distribution over topics instead of a distribution over words. In text modeling the

number of topics in LDA ranged from 5 to 800.

Image words were learned with the scale invariant feature transformation

(SIFT-GRID) [85] computed on a grid of image patches. A bag of SIFT descriptors

was first extracted from each image in the training set, using the SIFT implementa-

tion of LEAR4. A codebook, or dictionary of visual words was then learned with the

K-means clustering algorithm. The SIFT descriptors extracted from each image

were vector quantized with this codebook, producing a vector of visual word counts

per image. Besides this BOW representation, we also use a lower-dimensional rep-

resentation for images, similar to that for text, by fitting an LDA model to visual

word histograms and representing images as a distribution over topics. Preliminary

experiments indicated that this outperformed an image representation of reduced

dimensionality through principal component analysis (PCA). In image modeling

for LDA representation the number of topics ranged from 5 to 4, 000, for BOW

the number of visual words ranged from 128 to 8, 192.

5.6 Parameter selection

The combination of three retrieval modes (CM, SM, and SCM), three cor-

relation matching approaches (CFA, CCA, KCCA), two image representations

(BOW, LDA), and various distance measures d generates a large number of pos-

sibilities for the implementation of cross-modal retrieval. Since each configuration

has a number of parameters to tune, it is difficult to perform an exhaustive compar-

ison of all possibilities. Instead, we pursued a sequence of preliminary comparisons

to prune the configuration space, using a random 80/20 split of the training set,

for training and validation respectively (splitting TVGraz’ training set into 1, 245

4https://lear.inrialpes.fr/people/dorko/downloads.html
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training and 313 validation examples, and Wikipedia’s into 1, 738 training and

435 validation documents). This suggested a cross-modal retrieval architecture

that combines i) the centered normalized correlation (for distances d), ii) a BOW

(rather than LDA) representation for images, and iii) KCCA to learn correlation

subspaces. Supporting experiments are presented below. For each retrieval mode

– CM, SM, SCM for image queries or text queries – and each dataset – TVGraz,

Wikipedia –, the codebook size (for image representation), the number of topics

(for text representation) and/or the number of KCCA components were deter-

mined, where applicable, by performing a grid search and adopting the settings

with maximum retrieval performance on the validation set, unless indicated oth-

erwise. In the following section, the top performing approaches are compared on

the test set.

Distance Measures

We started by comparing a number of distance measures d, for the evalua-

tion of (5.7) and (5.9), in CM, SM, and SCM retrieval experiments (using KCCA

to produce the subspaces for CM and SCM, and BOW to represent images). The

distance measures are listed in 5.2 and 5.3 for TVGraz and Wikipedia respectively,

and include the Kullback-Leibler divergence (KL), `1 and `2 norms, normalized

correlation (NC), and centered normalized correlation (NCc). The KL divergence

was not used with CM because this technique does not produce a probability

simplex. 5.2 and 5.3 present the MAP scores achieved with each measure, on the

validation set. NCc achieved the best average performance in all experiments other

than CM-based retrieval on TVGraz, where it was outperformed by NC. Since

the difference was small even in this case, NCc was adopted as distance measure

in all remaining experiments.

Text and image representation

Due to the intractability of word counts, we considered only the LDA rep-

resentation for text. In the image domain, we compared the performance of the

BOW and LDA representations, using an SCM system based on KCCA subspaces



101

5 10 50 100 200 500 1000 4000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

LDA no. of topics

M
A

P

 

 

LDA (image query)
BoW 4096c (img query)
LDA (text query)
BoW 4096c (txt query)

5 10 50 100 200 500 1000 4000
0.1

0.15

0.2

0.25

0.3

LDA no. of topics

M
A

P

 

 

LDA (image query)
BoW 4096c (img query)
LDA (text query)
BoW 4096c (txt query)

(a) TVGraz (b) Wikipedia

Figure 5.7: MAP performance (cross-modal retrieval, validation set) of SCM

using two image models: BOW (flat lines) and LDA, for (a) TVGraz and (b)

Wikipedia.

and 4, 096 codewords for BOW (an optimal setting, as evidenced in Section 5.6).

Figure 5.7 presents the results for both text and image queries. Since the retrieval

performance of LDA was inferior to that of BOW, for all topic cardinalities, BOW

was adopted as the image representation for all remaining experiments.

Correlation matching

The next set of experiments was designed to compare the different CM

methods. These methods have different degrees of freedom and thus require dif-

ferent amounts of parameter tuning. The most flexible representation is KCCA,

whose performance varies with the choice of kernel and regularization parameter κ

of (5.5). We started by comparing various combinations of text and image kernels.

Best results were achieved for a chi-square radial basis function kernel5 for images

combined with a histogram intersection kernel [141, 18] for text. Combinations

involving other kernels (e.g., linear, Gaussian, exponential) achieved inferior vali-

dation set performance. Regarding regularization, best results were obtained with

κ = 10% on TVGraz and κ = 50% on Wikipedia. The need for a stronger regular-

5K(x, y) = exp
(

d
χ2 (x, y)

γ

)

where dχ2(x, y) is the chi-square distance between x and y and γ

the average chi-square distance among training points.
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Table 5.4: MAP for CM hypothesis (validation sets).

Experiment
Image Text

Average
Average Dataset

Query Query Gain

KCCA 0.486 0.462 0.474 -

TVGrazCCA 0.284 0.254 0.269 76%

CFA 0.195 0.179 0.187 153%

KCCA 0.287 0.239 0.263 -

Wiki.CCA 0.210 0.174 0.192 37%

CFA 0.195 0.156 0.176 50%

izer in Wikipedia suggests that there are more spurious correlations on this dataset,

which could lead to over-fitting. This is sensible, given the greater diversity and

abstraction of the concepts in this dataset.

For CCA (CFA), the only free parameter is the number of canonical compo-

nents (dimensionality of the shared space) used for both image and text represen-

tation. This parameter also remains to be tuned for KCCA. For each experiment

and data set, a grid search was performed and the parameter of best retrieval per-

formance was adapted under each method (CFA, CCA, KCCA). 5.4 presents best

CM performances achieved with each method. In all cases, KCCA yields top per-

formance. On TVGraz, the average gain (for text and image queries) is 153% over

CFA and 76% over CCA. On Wikipedia, the gain over CFA is 50% and over CCA

37%. KCCA was chosen to implement the correlation hypothesis in the remaining

experiments.

Parameter Tuning

For a cross-modal retrieval architecture combining the best of the above,

i.e., KCCA (to learn correlation subspaces), NCc (as distance measure), and the

BOW representation for images, we take a closer look at the codebook size for im-

age (BOW) representation, the number of topics for text (LDA) representation and

the number of KCCA components. Figure 5.5 summarizes the optimal parameter
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Table 5.5: Best parameter settings for CM, SM and SCM, on both TVGraz and

Wikipedia (validation sets).

CM SM SCM

MAP
0.49 / 0.46 0.59 / 0.56 0.68 / 0.64

TVGraz

image / text query

BOW codewords 4096

LDA topics 200 100 400

KCCA components 8 - 1125

MAP
0.29 / 0.24 0.35 / 0.27 0.39 / 0.29

Wikipedia

image / text query

BOW codewords 4096

LDA topics 20 600 200

KCCA components 10 - 38

settings (after performing a grid search with cross-validation) and corresponding

retrieval performance on the validation set, for CM, SM and SCM experiments.

5.8 provides more detail on how varying each parameter individually affects the

performance, for CM. Note that the best MAP scores are obtained with a small

number of KCCA components (< 10). For the image representation, best perfor-

mance was achieved with codebooks of 4, 096 visual words, on both datasets. For

text, 200 topics performed best on TVGraz and 20 on Wikipedia. Note that in

the test set experiments of Section 5.7, the number of KCCA components of 5.5

is scaled by the ratio of the number of training points of the test experiments and

that of the validation experiments (see A.4 and A.5 in Appendix A), so that a

comparable fraction of correlation is preserved after dimensionality reduction6.

6KCCA seeks directions of maximum correlation in Span{φI(I1), . . . , φI(I|B|)} and
Span{φT (T1), . . . , φT (T|B|)}, where |B| is the training set size. This is larger for test than for
validation experiments (2, 173 v.s. 1, 738 on Wikipedia and 1, 558 v.s. 1, 245 on TVGraz). Hence,
on average, a KCCA component will explain less correlation in the test than in the validation
experiments. It follows that a larger number of KCCA components are needed to capture the
same fraction of the total correlation.
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Figure 5.8: Cross-modal MAP for CM on TVGraz and Wikipedia (validation

sets), as a function of (a) the number of image codewords, (b) the number of text

LDA topics, and (c) the number of KCCA components (while keeping the other

two parameters fixed at the values reported in 5.5).

5.7 Testing the fundamental hypotheses

In this section, we compare the performance of CM, SM, and SCM on the

test set. In all cases, the parameter configurations are those that achieved best

cross-validation performance in the previous section. 5.6 compares the MAP scores

of cross-modal retrieval — text-to-image, image-to-text, and their average — using

CM, SM and SCM, to chance-level performance7. Two distinct observations can

be made from this table with regards to TVGraz. First, it provides evidence in

7Random images (text) returned in response to a text (image) query.
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Figure 5.9: Confusion matrices on the test set, for both TVGraz (left) and

Wikipedia (right). Rows refer to true categories, and columns to category predic-

tions. The more confusion on Wikipedia motivates the lower retrieval performance.

support of the two hypotheses of Section 5.3.3. Both joint dimensionality reduc-

tion (CM) and semantic abstraction (SM) are beneficial for multi-modal modeling,

leading to a non-trivial improvement over chance-level performance. For example,

in TVGraz, CM achieves an average MAP score of 0.497, over four times the

random retrieval performance of 0.114. SM yields an even greater improvement,

attaining a MAP score of 0.622. Second, combining correlation modeling with se-

mantic abstraction (SCM) is desirable, leading to higher MAP scores. On TVGraz,

SCM improves about 12% over SM and 40% over CM, achieving an average MAP

score of 0.694. This suggests that the contributions of cross-modal correlation and

semantic abstraction are complementary : not only is there an independent benefit

to both correlation modeling and abstraction, but the best performance is achieved

when the approaches underlying the two hypotheses are combined . The gains hold

for both cross-modal retrieval tasks, i.e., image and text queries.

Similar conclusions can be drawn for Wikipedia. However, the improvement

of SCM over SM is less substantial than in TVGraz. In fact, the retrieval perfor-

mances on Wikipedia are generally lower than those on TVGraz. As discussed in

Section 5.5, this is likely due to the broader scope of the Wikipedia categories. In
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Table 5.6: Cross-modal MAP on TVGraz and Wikipedia (test sets).

Experiment
Image Text

Average
Average

Query Query Gain

SCM 0.693 0.696 0.694 -

TVGraz
SM 0.625 0.618 0.622 11.6%

CM 0.507 0.486 0.497 39.6%

Random 0.114 0.114 0.114 509%

SCM 0.372 0.268 0.320 -

Wiki.
SM 0.362 0.252 0.307 4.2%

CM 0.282 0.225 0.253 26.5%

Random 0.119 0.119 0.119 170%

this dataset, a significant fraction of documents could be classified into multiple

categories, making the data harder to model. This explanation is supported by

the confusion matrices of Figure 5.9. These were built by assigning each text and

image query to the class of highest MAP in the ranking produced by SCM8. Note,

for example, the significant confusion between the categories “Architecture” and

“Places”, or “Royalty” and “Warfare”. Figure 5.10 and 5.11 presents PR curves

and precision at N curves, of cross-modal retrieval with CM, SM and SCM for

TVGraz and Wikipedia respectively. All methods yield non-trivial precision im-

provements, at all levels of recall, when compared to the random baseline. On

TVGraz, SM has higher precision than CM, and SCM has higher precision than

SM, at all levels of recall. On Wikipedia, SCM improves over CM, at all levels of

recall, but the improvement over SM is small. Figure 5.12 shows the MAP scores

achieved per category by all approaches. SCM has a significantly higher MAP than

CM and SM on all classes of TVGraz, and is either comparable or better than CM

and SM on the majority of classes of Wikipedia.

Few examples of text queries and corresponding retrieval results, using the

SCM methodology, are shown in Figure 5.13, 5.14, Figure 5.15, and 5.16. The text

8Note that this is not ideal for classification, since the MAP is computed over a ranking of
the test set.
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Figure 5.10: top) Precision recall curves, bottom) Precision at N curves for left)

Text query, right) Image query for TVGraz

query is presented along with its probability vector πT and the ground truth image.

The top five image matches are shown below the text, along with their probability

vectors πI . Note that SCM assigns these images the highest ranks in the retrieved

list because their semantic vectors (πI) most closely match that of the text (πT ).

For the TVGraz example (Figure 5.16) this can be verified by noting the common

concentration of probability mass around the “Butterfly” bin. In the Wikipedia

example (Figure 5.14) the probability is concentrated around the “Warfare” bin.

Finally, Figure 5.17 shows some examples of image-to-text retrieval. The query

images are shown on the top row, and the images associated with the four best

text matches are shown on the bottom.
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Figure 5.11: top) Precision recall curves, bottom) Precision at N curves for left)

Text query, right) Image query for Wikipedia
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Figure 5.12: Per-class MAP for the cross-modal retrieval tasks on TVGraz (left)

and Wikipedia (right): text queries (top); image queries (middle); and average

performance over both types of queries (bottom).
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Many seabirds are little studied and poorly known, due to living far out to sea and breeding in

isolated colonies. However, some seabirds, particularly, the albatrosses and gulls, have broken

into popular consciousness. The albatrosses have been described as ”the most legendary of

birds”, Carboneras, C. (1992) ”Family Diomedeidae (Albatrosses)” in ”Handbook of Birds of

the World” Vol 1. Barcelona:Lynx Edicions, ISBN 84-87334-10-5 and have a variety of myths

and legends associated with them, and today it is widely considered unlucky to harm them,

although the notion that sailors believed that is a mythCocker, M., & Mabey, R., (2005) ”Birds

Britannica” London:Chatto & Windus, ISBN 0-7011-6907-9 which derives from Samuel Taylor

Coleridge’s famous poem, ”The Rime of the Ancient Mariner”, in which a sailor is punished

for killing an albatross by having to wear its corpse around his neck. ”Instead of the Cross

the Albatross” ”About my neck was hung” Sailors did, however, consider it unlucky to touch

a storm-petrel, especially one that has landed on the ship. Carboneras, C. (1992) ”Family

Hydrobatidae (Storm-petrels)” in ”Handbook of Birds of the World” Vol 1. Barcelona:Lynx

Edicions, ISBN 84-87334-10-5 Gulls are one of the most commonly seen seabirds, given their

use of human-made habitats (such as cities an d dumps) and their often fearless nature. They

therefore also have made it into the popular consciousness - they have been used metaphorically,

as in ”Jonathan Livingston Seagull” by Richard Bach, or to denote a closeness to the sea, such

as their use in the ”The Lord of the Rings” both in the insignia of Gondor and therefore

Númenor (used in the design of the films), and to call Legolas to (and across) the sea.
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Figure 5.13: Text query from Biology class of Wikipedia and the top 5 retrieved

images retrieved using SCM. The query text, associated probability vector, and

ground truth image are shown on the top; retrieved images are presented at the

bottom.
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Between October 1 and October 17, the Japanese delivered 15,000 troops

to Guadalcanal, giving Hyakutake 20,000 total troops to employ for his

planned offensive. Because of the loss of their positions on the east side of

the Matanikau, the Japanese decided that an attack on the U.S. defenses

along the coast would be prohibitively difficult. Therefore, Hyakutake de-

cided that the main thrust of his planned attack would be from south of

Henderson Field. His 2nd Division (augmented by troops from the 38th

Infantry Division), under Lieutenant General Masao Maruyama and com-

prising 7,000 soldiers in three infantry regiments of three battalions each

was ordered to march through the jungle and attack the American defences

from the south near the east bank of the Lunga River.Shaw, “First Offen-

sive”, p. 34, and Rottman, “Japanese Army”, p. 63. (...)
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Figure 5.14: Text query from ’Warfare’ class of Wikipedia and the top 5 retrieved

images retrieved using SCM. The query text, associated probability vector, and

ground truth image are shown on the top; retrieved images are presented at the

bottom.
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A small cactus with thin spiny stems, seen

against the sky and a low hill in the background.

In the high Mojave desert of western Arizona.
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Figure 5.15: Text query from ’Cactus’ class of TVGraz and the top 5 retrieved

images retrieved using SCM. The query text, associated probability vector, and

ground truth image are shown on the top; retrieved images are presented at the

bottom.
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On the Nature Trail behind the Bathabara

Church, there are numerous wild flowers and

plants blooming, that attract a variety of in-

sects, bees and birds. Here a beautiful Butterfly

is attracted to the blooms of the Joe Pye Weed.
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Figure 5.16: Text query from ’Butterfly’ class of TVGraz and the top 5 retrieved

images retrieved using SCM. The query text, associated probability vector, and

ground truth image are shown on the top; retrieved images are presented at the

bottom.
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Figure 5.17: Image-to-text retrieval on TVGraz (first two columns) and

Wikipedia (last two columns). Query images are shown on the top row. The

four most relevant texts, represented by their ground truth images, are shown in

the remaining columns.




