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Abstract

The problem of data augmentation in feature space is

considered. A new architecture, denoted the FeATure Trans-

fEr Network (FATTEN), is proposed for the modeling of fea-

ture trajectories induced by variations of object pose. This

architecture exploits a parametrization of the pose mani-

fold in terms of pose and appearance. This leads to a deep

encoder/decoder network architecture, where the encoder

factors into an appearance and a pose predictor. Unlike

previous attempts at trajectory transfer, FATTEN can be

efficiently trained end-to-end, with no need to train sepa-

rate feature transfer functions. This is realized by supplying

the decoder with information about a target pose and the

use of a multi-task loss that penalizes category- and pose-

mismatches. In result, FATTEN discourages discontinuous

or non-smooth trajectories that fail to capture the structure

of the pose manifold, and generalizes well on object recog-

nition tasks involving large pose variation. Experimental

results on the artificial ModelNet database show that it can

successfully learn to map source features to target features

of a desired pose, while preserving class identity. Most no-

tably, by using feature space transfer for data augmentation

(w.r.t. pose and depth) on SUN-RGBD objects, we demon-

strate considerable performance improvements on one/few-

shot object recognition in a transfer learning setup, com-

pared to current state-of-the-art methods.

1. Introduction

Convolutional neural networks (CNNs) trained on large

datasets, such as ImageNet [2], have enabled tremendous

gains in problems like object recognition over the last

few years. These models not only achieve human level

performance in recognition challenges, but are also eas-

ily transferable to other tasks, by fine tuning. Many re-

cent works have shown that ImageNet trained CNNs, like
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Figure 1: Schematic illustration of feature space transfer for vari-

ations in pose. The input feature x and transferred feature x̂ are

projected to the same point in appearance space, but have different

mapping points in pose space.

AlexNet [14], VGG [27], GoogLeNet [32], or ResNet [9]

can be used as feature extractors for the solution of prob-

lems as diverse as object detection [6, 23] or generating

image captions [12, 35]. Nevertheless, there are still chal-

lenges to CNN-based recognition. One limitation is that

existing CNNs still have limited ability to handle pose

variability. This is, in part, due to limitations of existing

datasets, which are usually collected on the web and are bi-

ased towards a certain type of images. For example, objects

that have a well defined “frontal view,” such as “couch” or

“clock,” are rarely available from viewing angles that differ

significantly from frontal.

This is problematic for applications like robotics, where

a robot might have to navigate around or manipulate such

objects. When implemented in real time, current CNNs

tend to produce object labels that are unstable with respect

to viewing angle. The resulting object recognition can vary

19090



from nearly perfect under some views to much weaker for

neighboring, and very similar, views. One potential solution

to the problem is to rely on larger datasets with a much more

dense sampling of the viewing sphere. This, however, is

not trivial to accomplish for a number of reasons. First, for

many classes, such images are not easy to find on the web in

large enough quantities. Second, because existing recogni-

tion methods are weakest at recognizing “off-view” images,

the process cannot be easily automated. Third, the alterna-

tive of collecting these images in the lab is quite daunting.

While this has been done in the past, e.g., the COIL [17],

NORB [16], or Yale face dataset, these datasets are too

small by modern standards. The set-ups used to collect

them, by either using a robotic table and several cameras,

or building a camera dome, can also not be easily replicated

and do not lend themselves to distributed dataset creation

efforts, such as crowd sourcing. Finally, even if feasible to

assemble, such datasets would be massive and thus difficult

to process. For example, the NORB recommendation of

collecting 9 elevations, 36 azimuths, and 6 lighting condi-

tions per object, results in 1944 images per object. Applying

this standard to ImageNet would result in a dataset of close

to 2 billion images!

Some of these problems can be addressed by resorting

to computer generated images. This has indeed become an

established practice to address problems that require mul-

tiple object views, such as shape recognition, where syn-

thetic image datasets [19, 31] are routinely used. However,

the application of networks trained on synthetic data to real

images raises a problem of transfer learning. While there

is a vast literature on this topic [28, 15, 24, 33, 36, 26, 22],

these methods are usually not tailored for the transfer of

object poses. In particular, they do not explicitly account

for the fact that, as illustrated in Fig. 1, objects subject to

pose variation span low-dimensional manifolds of image

space, or corresponding spaces of CNN features. This has

recently been addressed by [3], who have proposed an at-

tribute guided augmentation (AGA) method to transfer ob-

ject trajectories along the pose manifold.

Besides learning a classifier that generalizes on target

data, the AGA transfer learning system also includes a mod-

ule that predicts the responses of the model across views.

More precisely, given a view of an unseen object, it pre-

dicts the model responses to a set of other views of this ob-

ject. These can then be used to augment the training set

of a one-shot classifier, i.e., a classifier that requires a sin-

gle image per object for training. While this was shown

to improve on generic transfer learning methods, AGA has

some limitations. For example, it discretizes the pose angle

into several bins and learns an independent trajectory trans-

fer function between each possible pair of them. While this

simplifies learning, the trajectories are not guaranteed to be

continuous. Hence, the modeling fails to capture some of

the core properties of the pose manifold, such as continuity

and smoothness. In fact, a 360◦ walk around the viewing

sphere is not guaranteed to have identical start and finishing

feature responses. In our experience, these choices compro-

mise the effectiveness of the transfer.

Contribution. In this work, we propose an alternative,

termed FeATure TransfEr Network (FATTEN), that ad-

dresses these problems. Essentially, FATTEN is an encoder-

decoder architecture, inspired by Fig. 1. We exploit a

parametrization of pose trajectories in terms of an appear-

ance map, which captures properties such as object color

and texture and is constant for each object, and a pose map,

which is pose dependent. The encoder maps the feature

responses x of a CNN for an object image into a pair of

appearance A(x) and pose P(x) parameters. The decoder

then takes these parameters plus a target pose t = P(x̂)
and produces the corresponding feature vector x̂. The net-

work is trained end-to-end, using a multi-task loss that ac-

counts for both classification errors and the accuracy of fea-

ture transfer across views.

The performance of FATTEN is investigated on two

tasks. The first is a multi-view retrieval task, where syn-

thesized feature vectors are used to retrieve images by ob-

ject class and pose. These experiments are conducted on

the popular ModelNet [37] shape dataset and show that

FATTEN generates features of good quality for applica-

tions involving computer graphics imagery. This could be

of use for a now large corpus of 3D shape classification

works [37, 20, 30, 21], where such datasets are predomi-

nant. The second task is transfer learning. We compare the

performance of the proposed architecture against both gen-

eral purpose transfer learning algorithms and the AGA pro-

cedure. Our results show that there are significant benefits

in developing methods explicitly for trajectory transfer, and

in forcing these methods to learn continuous trajectories in

the pose manifold. The FATTEN architecture is shown to

achieve state-of-the-art performance for pose transfer.

Organization. In Sect. 2, we review related work; Sect. 3

introduces the proposed FATTEN architecture. Sect. 4

presents experimental results on ModelNet and SUN-

RGBD and Sect. 5 concludes the paper with a discussion

of the main points and an outlook on open issues.

2. Related Work

Since objects describe smooth trajectories in image

space, as a function of viewing angle, it has long been

known that such trajectories span a 3D manifold in image

space, parameterized by the viewing angle. Hence, many

of the manifold modeling methods proposed in the litera-

ture [25, 1, 34] could, in principle, be used to develop tra-

jectory transfer algorithms. However, many of these meth-

ods are transductive, i.e., they do not produce a function that
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can make predictions for images outside of the training set,

and do not leverage recent advances in deep learning. While

deep learning could be used to explicitly model pose mani-

folds, it is difficult to rely on CNNs pre-trained on ImageNet

for this purpose. This is because these networks attempt to

collapse the manifold into a space where class discrimina-

tion is linear. On the other hand, the feature trajectories in

response to pose variability are readily available. These tra-

jectories are also much easier to model. For example, if the

CNN is successful in mapping the pose manifold of a given

object into a single point, i.e., exhibits total pose invariance

for that object, the problem is already solved and trajectory

leaning is trivial for that object.

One of the main goals of trajectory transfer is to “fat-

ten” a feature space, by augmenting a dataset with feature

responses of unseen object poses. In this sense, the prob-

lem is related to extensive recent literature on GANs [7],

which have been successfully used to generate images,

image-to-image translations [10], inpainting [18] or style-

transfer [5]. While our work uses an encoder-decoder ar-

chitecture, which is fairly common in the GAN-based im-

age generation literature, we aim for a different goal of gen-

erating CNN feature responses. This prevents access to a

dataset of “real” feature responses across the pose manifold,

since these are generally unknown. While an ImageNet

CNN could be used to produce some features, the problem

that we are trying to solve is exactly the fact that ImageNet

CNNs do not effectively model the pose manifold. Hence,

the GAN formalism of learning to match a “real” distribu-

tion is not easily applicable to trajectory transfer.

Instead, trajectory transfer is more closely related to the

topic of transfer learning, where, now, there is extensive

work on problems such as zero-shot [28, 15, 24] or n-

shot [33, 36, 26, 22] learning. However, these methods

tend to be of general purpose. In some cases, they ex-

ploit generic semantic properties, such as attributes or af-

fordances [15, 24], in others they simply rely on generic

machine learning for domain adaptation [28], transfer learn-

ing [36] or, more recently, meta-learning [26, 4, 22]. None

of these methods exploits specific properties of the pose

manifold, such as the parametrization in Fig. 1. The intro-

duction of networks that enforce such parameterizations is a

form of regularization that improves on the transfer perfor-

mance of generic procedures. This was shown in the AGA

work [3] and is confirmed by our results, which show even

larger gains over very recent generic methods, such as fea-

ture hallucination as proposed in [8].

Finally, trajectory transfer is of interest for problems

involving multi-view recognition. Due to the increased

cost of multi-view imaging, these problems frequently in-

clude some degree of learning from computer generated

images. This is, for example, an established practice in

the shape recognition literature, where synthetic image

datasets [19, 31] are routinely used. The emergence of

these artificial datasets has enabled a rich literature in shape

recognition methods [13, 37, 30, 20, 21, 11] and already

produced some interesting conclusions. For example, while

many representations have been proposed, there is some ev-

idence that the problem could be solved as one of multi-

view recognition, using simple multi-view extensions of

current CNNs [30]. It is not clear, however, how these meth-

ods or conclusions generalize to real world images. Our

results show that feature trajectory transfer models, such

as FATTEN, learned on synthetic datasets, such as Mod-

elNet [37], can be successfully transferred to real image

datasets, such as SUN-RGBD [29].

3. The FATTEN architecture

In this section, we describe the proposed architecture for

feature space transfer.

3.1. Motivation

In this work, we assume the availability of a train-

ing set with pose annotations, i.e., {(xn,pn, yn)}n, where

xn ∈ R
D is the feature vector (e.g., a CNN activation at

some layer) extracted from an image, pn is the correspond-

ing pose value and yn a category label. The pose value

could be a scalar pn, e.g., the azimuth angle on the viewing

sphere, but is more generally a vector, e.g., also encoding

an elevation angle or even the distance to the object (object

depth). The problem is to learn the feature transfer function

F(xn,p) that maps the source feature vector xn to a target

feature vector x̂n corresponding to a new pose p.

3.2. The FATTEN Architecture

The FATTEN architecture is inspired by Fig. 1, which

depicts the manifold spanned by an object under pose varia-

tion. The manifold M is embedded in R
D and is parameter-

ized by two variables. The first, is an appearance descriptor

a ∈ R
A that captures object properties such as color or tex-

ture. This parameter is pose invariant, i.e., it has the same

value for all points on the manifold. It can be thought of as

an object identifier that distinguishes the manifold spanned

by one object from those spanned by others. However, ap-

pearance is not the same as category. Some objects of dif-

ferent categories can have more similar appearance than ob-

jects of the same category). The second is a pose descriptor

p ∈ R
N that characterizes the point x on the manifold that

corresponds to a particular pose p. Conceptually, feature

points x could be thought of as the realization of a mapping

φ : RA × R
N → M, φ(a,p) 7→ x . (1)

The FATTEN architecture models the relationship be-

tween the feature vectors extracted from object images and

the associated appearance and pose parameters. As shown
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Figure 2: The FATTEN architecture. Here, id denotes the iden-

tity shortcut connection, D the dimensionality of the input feature

space, A the dimensionality of the appearance space and P
N−1 the

N − 1 probability simplex. Both pose predictors are pre-trained

and share parameters.

in Fig. 2, it is an encoder/decoder architecture. The encoder

essentially aims to invert the mapping of Eq. (1). Given a

feature vector x, it produces an estimate of the appearance

a and pose p parameters. This is complemented with a tar-

get pose parameter t, which specifies the pose associated

with a desired feature vector x̂. This feature is then gener-

ated by a decoder that that operates on the concatenation of

a, p and t. While, in principle, it would suffice to rely on

x̂ = φ(a, t), i.e., to use the inverse of the encoder as a de-

coder, we have obtained the best results with the following

modifications.

First, to discourage the encoder/decoder pair from learn-

ing a mapping that simply “matches” feature pairs, FAT-

TEN implements the residual learning paradigm of [9]. In

particular, the encoder-decoder is only used to learn the

residual

F(x) = x̂− x (2)

between the target and source feature vectors. Second, two

mappings that explicitly recover the appearance a and pose

p are used instead of a single monolithic encoder. This fa-

cilitates learning, since the pose predictor can be learned

with full supervision. Third, a vector encoding is used for

the source p and target t parameters, instead of continuous

values. This makes the dimensionality of the pose param-

eters closer to that of the appearance parameter, enabling a

more balanced learning problem. We have found that, oth-

erwise, the learning algorithm can have a tendency to ignore

the pose parameters and produce a smaller diversity of tar-

get feature vectors. Finally, rather than a function of a and

t alone, the decoder is a function of a, p, and t. This again

guarantees that the intermediate representation is higher di-

mensional and facilitates the learning of the decoder. We

next discuss the details of the various network modules.

3.3. Network details

Encoder. The encoder consists of a pose and an appear-

ance predictor. The pose predictor implements the mapping

p = P(x) from feature vectors x to pose parameters. The

poses are first internally mapped into a code vector c ∈ R
N

of dimensionality comparable to that of the appearance vec-

tor a. In the current implementation of FATTEN this is

achieved in three steps. First, the pose space is quantized

into N cells of centroids mi. Each pose is then assigned to

the cell of the nearest representative m∗ and represented by

a N -dimensional one-hot encoding that identifies m∗. The

pose mapping P is finally implemented with a classifier that

maps x into a vector of posterior probabilities

p = [p(m1|x), . . . , p(mN |x)] (3)

on the N − 1 probability simplex P
N−1. This is imple-

mented with a two-layer neural network, composed of a

fully-connected layer, batch normalization, and a ReLU,

followed by a softmax layer.

The appearance predictor implements the mapping a =
A(x) from feature vectors x to appearance descriptors a.

This is realized with a two-layer network, where each layer

consists of a fully-connected layer, batch normalization, and

a ELU layer. The outputs of the pose and appearance pre-

dictors are concatenated with a one-hot encoding of the tar-

get pose. Assuming that this pose belongs to the cell of

centroid mj , this is t = ej , where ej is a vector of all zeros

with a 1 at position j.

Decoder. The decoder maps the vector of concatenated ap-

pearance and pose parameters1,i.e.,

[a ⊕ p ⊕ t] (4)

into the residual x̂ − x. It is implemented with a two layer

network, where the first layer contains a sequence of fully-

connected layer, batch normalization, and ELU, and the sec-

ond is a fully connected layer. The decoder output is then

added to the input x to produce the target x̂.

Although conceptually similar, our architecture is differ-

ent from AGA [3] and solves some key limitations of the

latter. In particular, the feature synthesis function f(x, p, t)

1⊕ denotes vector concatenation.
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Figure 3: Exemplary ModelNet [37] views: (a) different views of one object (airplane); (b)-(c) different views of two symmetric objects

(bowl, plant); (d)-(e) four views (bookshelf, desk) with 90 degrees difference.

of AGA is implemented as a series of encoder-decoder mod-

ules fp,t(x), one for each (p, t). The number of these func-

tions grows exponentially and AGA needs to learn a differ-

ent f for each p�t and t�p; there is no provision to share

information. As we train only a single network for this task,

(1) model complexity scales favorably with pose quantiza-

tion and (2) due to weight sharing, pose translations are in-

formed by each other. Also, AGA uses an L2 regularizer

in feature space, which may not preserve class identity; we

use a category loss which is certainly a better choice.

3.4. Training

The network is trained end-to-end to optimize a multi-

task loss that accounts for two goals. The first goal is that

the generated feature vector x̂ indeed corresponds to the de-

sired pose t. This is measured by the pose loss, which is the

cross-entropy loss commonly used for classification, i.e.,

Lp(x̂, t) = − log ρj(P(x̂)) , (5)

where ρj(v) =
e
vj

∑
k
evk

is the softmax function and j is the

non-zero element of the one-hot vector t = ej . Note that,

as shown in Fig. 2, this requires passing the target feature

vector x̂ through the pose predictor P . It should be em-

phasized that this is only needed during training, albeit the

loss in Eq. (6) can also be measured during inference, since

the target pose t is known. This can serve as a diagnostic

measure for the performance of FATTEN.

The second goal is that the generated feature vector x̂

is assigned the same class label y as the source vector x.

This encourages the generation of features with high recog-

nition accuracy on the original object recognition problem.

Recognition accuracy depends on the network used to ex-

tract the feature vectors, denoted as CNN in Fig. 2. Note

that this network can be fine-tuned for operation with the

FATTEN module in an end-to-end manner. While FATTEN

can, in principle, be applied to any such network, our im-

plementation is based on the VGG16 model of [27]. More

specifically, we rely on the fc7 activations of a fine-tuned

VGG16 network as source and target features. The category

predictor of Fig. 2 is then the fc8 layer of this network. The

accuracy of this predictor is measured by cross-entropy loss

Lc(x̂, y) = − log ρy(x̂) , (6)

where ρ(v) is the softmax output of this network. The multi-

task loss is then defined as

L(x̂, t, y) = Lp(x̂, t) + Lc(x̂, y) . (7)

In general, it is beneficial to pre-train the pose predictor

P(x) and embed it into the encoder-decoder structure. This

reduces the number of degrees of freedom of the network,

and minimizes the ambiguity inherent to the fact that a given

feature vector could be consistent with multiple pairs of

pose and appearance parameters. For example, while all

feature vectors x extracted from views of the same object

should be constrained to map into the same appearance pa-

rameter value a, we have, so far, felt no need to enforce

such constraint. This endows the network with robustness

to small variations of the appearance descriptor, due to oc-

clusions, etc. Furthermore, when a pre-trained pose predic-

tor is used, only the weights of the encoder/decoder need to

be learned. The weights of the sub-networks used by the

loss function(s) are fixed. This minimizes the chance that

FATTEN will over-fit to specific poses or object categories.

4. Experiments

We first train and evaluate the FATTEN model on the

artificial ModelNet [37] dataset (Sec. 4.1), and then assess

its feature augmentation performance on the one/few-shot

object recognition task introduced in [3] (Sec. 4.2).

4.1. ModelNet

Dataset. ModelNet [37] is a 3D artificial data set with 3D

voxel grids. It contains 4000 shapes from 40 object cate-

gories. Given a 3D shape, it is possible to render 2D im-

ages from any pose. In our experiments, we follow the
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Degrees → 0 30 60 90 120 150 180

VGG16 72.3 2.2 1.1 4.0 0.9 1.0 18.5

ResNet-101 64.4 2.9 2.3 5.1 2.3 1.6 21.4

Pose Object category

VGG16 96.20 83.65

ResNet-101 99.95 84.13

Table 1: Top: Pose prediction error (in %); Bottom: Pose & cate-

gory accuracy (in %) of generated features.

rendering strategy of [30]. 12 virtual cameras are placed

around the object, in increments of 30 degrees along the z-

axis, and 30 degrees above the ground. Several rendered

views are shown in Fig. 3. The training and testing division

is the same as in the ModelNet benchmark, using 80 ob-

jects per category for training and 20 for testing. However,

the dataset contains some categories of symmetric objects,

such as “bowl”, which produce identical images from all

views (see Fig. 3(b)) and some that lack any distinctive in-

formation across views, such as “plant” (see Fig. 3(c)). For

training, these objects are eliminated and the remaining 28
object categories are used.

Implementation. To verify the generality of our approach,

both VGG16 [27] and ResNet-101 [9] are adopted as back-

bone architectures in feature transfer experiments, while

only VGG16 is used in others. All feature vectors x are

collected from activations of the last fully-connected layer

of fine-tuned networks, namely fc7 in VGG16 and pool5

in ResNet101. The pose predictor is trained with a learning

rate of 0.01 for 1000 epochs, and evaluated on the testing

corpus. The complete FATTEN model is then trained for

1000 epochs with a learning rate of 0.01. The angle range

of 0◦–360◦ is split into 12 non-overlapping intervals of size

30◦ each, labeled as 0-11. Any given angle is then converted

to a classification label based on the interval it belongs to.

4.1.1 Feature transfer results

The feature transfer performance of FATTEN is assessed in

two steps. The accuracy of the pose predictor is evaluated

first, with the results listed in Table. 1. The large majority

of the errors have magnitude of 180◦. This is not surpris-

ing, since ModelNet images have no texture. As as shown

in Fig. 3(d)-(e), object views that differ by 180◦ can be sim-

ilar or even identical for some objects. However, this is not

a substantial problem for transfer. Since two feature vec-

tors corresponding to the 180◦ difference are close to each

other in feature space, to the point where the loss cannot dis-

tinguish them clearly, FATTEN will generate target features

close to the source, which is the goal anyway. If these errors

are disregarded, the pose prediction has accuracy 90.8% in

VGG16 and 85.8% in ResNet-101.

The second evaluation step measures the feature trans-

fer performance of the whole network, given the pre-trained

Feature type (P)ose (C)ategory P + C

Real 54.58 32.71 23.65

Generated 77.62 28.89 11.07

Table 2: Retrieval performance in mAP [%] of real and generated

features, on the testing portion of ModelNet, for distance functions

d1, d2 and dc, see Sec. 4.1.2.

pose predictor. During training, each feature in the training

set is transferred to all 12 views (including identity). During

testing, this is repeated for each test feature. The accuracy

of the pose and category prediction of the features, gener-

ated on the test corpus, is listed in Table 1. Note that, here,

category refers to object category or class. It is clear that

on a large synthetic dataset, such as ModelNet, FATTEN

can generate features of good quality, as indicated by the

pose prediction accuracy of 96.2% and the category predic-

tion accuracy of 83.65%. Further, pose prediction error as

well as pose and category accuracy of generated features on

ModelNet show similar performance w.r.t. both backbones.

4.1.2 Retrieval with generated features

A set of retrieval experiments is performed on ModelNet to

further assess the effectiveness of FATTEN generated fea-

tures. These experiments address the question of whether

the latter can be used to retrieve instances of (1) the same

class or (2) the same pose. Since all features are extracted

from the VGG16 fc7 layer, the Euclidean distance

d1(x,y) = ||x− y||2 (8)

is a sensible similarity measure between x and y for the pur-

pose of retrieving images of the same object category. This

is because the model is trained to map features with equal

category labels to the same partitions of the feature space

(enforced by the category loss Lc). However, d1 is inade-

quate for pose retrieval. Instead, retrieval is based on the

activation of the second fully-connected layer of the pose

predictor P , denoted by γ(x). The pose distance function

is then defined as

d2(x,y) = ||γ(x)− γ(y)||2 . (9)

Finally, the performance of joint category & pose re-

trieval is measured with a combined distance, i.e.,

dc(x,y) = d1(x,y) + λd2(x,y) . (10)

All queries and instances to be retrieved are based on gener-

ated features from the testing corpus of ModelNet. For each

generated feature, three queries are performed: (1) Cate-

gory, (2) Pose, and (3) Category & Pose. This is compared

to the performance, on the same experiment, of the real fea-

tures extracted from the testing corpus.
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Retrieval results are listed in Table 2 and some retrieval

examples are shown in Fig. 4. The generated features en-

able a very high mAP for pose retrieval, even higher than

the mAP of real features. This is strong evidence that FAT-

TEN successfully encodes pose information in the trans-

ferred features. The mAP of the generated features on cate-

gory retrieval and the combination of both is comparatively

low. However, the performance of real features is also weak

on these tasks. This could be due to a failure of mapping

features from the same category into well defined neighbor-

hoods, or to the distance metric used for retrieval. While re-

trieval performs a nearest neighbor search under these met-

rics, the network optimizes the cross-entropy loss on the

softmax output(s) of both output branches of Fig. 2. The

distance of Eq. (10) may be a particularly poor way to assess

joint category and pose distances. In the following section,

we will see that using a strong classifier (e.g., a SVM) on

the generated features produces significantly better results.

4.2. Fewshot object recognition

The experiments above provide no insight on whether

FATTEN generates meaningful features for tasks involving

real world datasets. In this section, we assess feature trans-

fer performance on a one/few-shot object recognition prob-

lem. On this task, feature transfer is used for feature space

“fattening” or data augmentation. The benchmark data is

collected from SUN-RGBD [29], following the setup of [3].

Dataset. The whole SUN-RGBD dataset contains 10335
images and their corresponding depth maps. Additionally,

2D and 3D bounding boxes are available as ground truth for

object detection. Depth (distance from the camera plane)

and Pose (rotation around the vertical axis of the 3D co-

ordinate system) are used as pose parameters in this task.

The depth range of [0, 5) m is broken into non-overlapping

intervals of size 0.5m. An additional interval [5,+∞) is in-

cluded for larger depth values. For pose, the angular range

of 0◦–180◦ is divided into 12 non-overlapping intervals of

size 15◦ each. These intervals are used for one-hot encod-

ing and system training. To allow a fair comparison with

AGA, however, during testing, we restrict the desired pose

t to take the values 45◦, 75◦, ..., 180◦, prescribed in [3].

This is mainly to ensure that our system generates 11 syn-

thetic points along the Depth trajectory and 7 along the

Pose trajectory. The first 5335 images of SUN-RGBD are

used for training and the remaining 5000 images for testing.

However, if only ground truth bounding boxes are used for

object extraction, the instances are neither balanced w.r.t.

categories, nor w.r.t. pose/depth values. To remedy this is-

sue, a fast R-CNN [6] object detector is fine-tuned on the

dataset and the selective search proposals with IoU > 0.5
(to ground truth boxes) and detection scores > 0.7 are used

to extract object images for training. As this strategy pro-

duces a sufficient amount of data, the training set can be

S (19, Source) T1 (10) T2 (10)

bathtub lamp picture mug

bed monitor whiteboard telephone

bookshelf night stand fridge bowl

box pillow counter bottle

chair sink books scanner

counter sofa stove microwave

desk table cabinet coffee table

door tv printer recycle bin

dresser toilet computer cart

garbage bin ottoman bench

Table 3: List of object categories in the source S training set and

the two target/evaluation sets T1 and T2.

easily balanced per category, as well as pose and depth. In

the testing set, only ground truth bounding boxes are used

to exact objects. All source features are exacted from the

penultimate (i.e., fc7) layer of the fine-tuned fast R-CNN

detector for all instances from both training and testing sets.

Evaluation is based on the source and target object

classes in [3]. We denote S as the source dataset, and let T1
and T2 denote two different (disjoint) target datasets; fur-

ther, T3 = T1 ∪ T2 denotes a third dataset that is a union of

the first two. Table 3 lists all the object categories in each

set. The instances in S are collected from the training por-

tion of SUN-RGBD only, while those in T1 and T2 are col-

lected from the testing set. Further, S does not overlap with

any Ti which ensurers that FATTEN has no access to shared

knowledge between training/testing images or classes.

Implementation. The attribute predictors for pose and

depth are trained with a learning rate of 0.01 for 1000
epochs. The feature transfer network is fine-tuned, starting

from the weights obtained from the ModelNet experiment

of Sec. 4.1, with a learning rate of 0.001 for 2000 epochs.

The classification problems on T1 and T2 are 10-class prob-

lems, whereas T3 is a 20-class problem. As a baseline for

one-shot learning, we train a linear SVM using only a single

instance per class. We then feed those same instances into

the transfer network to generate artificial features for dif-

ferent values of depth and pose, in particular, 11 values for

depth and 7 for pose. After feature synthesis, a linear SVM

is trained with the same parameters on the now augmented

(“fattened”) feature set (source and target features).

4.2.1 Results

Table 4 lists the averaged one-shot (and five-shot) recogni-

tion accuracies (over 500 random runs) for all three evalu-

ation sets Ti. Additionally, recognition accuracies of two

recently proposed data augmentation works, i.e., feature

hallucination [8] and AGA [3] are also reported. Table 4

supports the following conclusions. First, when compared

to the SVM baseline, FATTEN achieves a remarkable and

consistent improvement of around 10 percentage points on

all evaluation sets. This indicates that FATTEN can actu-

ally embed the pose information into features and effec-
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Query

Category

Pose

Category
+ Pose

Top-10 retrieved images

Figure 4: Exemplary retrieval results for the experiments of Sec. 4.1.2. Lines are annotated by the retrieval type and errors are highlighted

in red. In the query part, (left) shows the original image, (right) shows the original image corresponding to the generated feature.

tively “fatten” the data used to train the linear SVM. Second,

and most notably, FATTEN achieves a significant improve-

ment (about 5 percentage points) over AGA, and an even

larger improvement over the feature hallucination approach

of [8]. The improved performances of FATTEN over AGA

and AGA over hallucination show that it is important (1)

to exploit the structure of the pose manifold (which only

FATTEN and AGA do), and (2) to rely on models that can

capture defining properties of this manifold, such as con-

tinuity and smoothness of feature trajectories (which AGA

does not).

While feature hallucination works remarkably well in

the ImageNet1k low-shot setup of [8], Table 4 shows only

marginal gains over the baseline (especially in the one-shot

case). There may be several reasons as to why it fails in

this setup. First, the number of examples per category (k in

the notation of [8]) is a hyper-parameter set through cross-

validation. To make the comparison fair, we chose to use

the same value in all methods, which is k = 19. This may

not be the optimal setting for [8]. Second, we adopt the

same number of clusters as used by the authors when train-

ing the generator. However, the best value may depend on

the dataset (ImageNet1k in [8] vs. SUN-RGBD here). With-

out clear guidelines of how to set this parameter, it seems

challenging to adjust it appropriately. Third, all results of

[8] list the top-5 accuracy, while we use top-1 accuracy. Fi-

nally, FATTEN takes advantage of pose and depth to gen-

erate features, while the hallucination feature generator is

non-parametric and does not explicitly use this information.

The improvement of FATTEN over AGA can most likely

be attributed to (1) the fact that AGA uses separate synthe-

sis functions (trained independently) and (2) failure cases

of the pose/depth predictor that determines which particu-

lar synthesis function is used. In case of the latter, gener-

ated features are likely to be less informative, or might even

confound any subsequent classifier.

Baseline Hal. [8] AGA [3] FATTEN

1
–

sh
o

t T1 (10) 33.74 35.43 39.10 44.99

T2 (10) 23.76 21.12 30.12 34.70

T3 (20) 22.84 21.67 26.67 32.20
5

–
sh

o
t T1 (10) 50.03 50.31 56.92 58.82

T2 (10) 36.76 38.07 47.04 50.69

T3 (20) 37.37 38.24 42.87 47.07

Table 4: One-/Five-shot recognition accuracy for three recogni-

tion problems (from SUN-RGBD). Accuracies (in %) are averaged

over 500 random runs. Baseline denotes the accuracy of a linear

SVM, when trained on single instances of each class only.

5. Discussion

The proposed architecture to data augmentation in fea-

ture space, FATTEN, aims to learn trajectories of feature

responses, induced by variations in image properties (such

as pose). These trajectories can then be easily traversed

via one learned mapping function which, when applied

to instances of novel classes, effectively enriches the fea-

ture space by additional samples corresponding to a desired

change, e.g., in pose. This “fattening” of the feature space is

highly beneficial in situations where the collection of large

amounts of adequate training data to cover these variations

would be time-consuming, if not impossible. In principle,

FATTEN can be used for any kind of desired (continuous)

variation, so long as the trajectories can be learned from ex-

ternal data. By discretizing the space of variations, e.g., the

rotation angle in case of pose, we also effectively reduce the

dimensionality of the learning problem and ensure that the

approach scales favorably w.r.t. different resolutions of de-

sired changes. Finally, it is worth pointing out that feature

space transfer via FATTEN is not limited to object images;

rather, it is a generic architecture in the sense that any vari-

ation could, in principle, be learned and transferred.
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