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Abstract

The problem of adversarial CNN attacks is considered,
with an emphasis on attacks that are trivial to perform but
difficult to defend. A framework for the study of such attacks
is proposed, using real world object manipulations. Unlike
most works in the past, this framework supports the design
of attacks based on both small and large image perturba-
tions, implemented by camera shake and pose variation. A
setup is proposed for the collection of such perturbations
and determination of their perceptibility. It is argued that
perceptibility depends on context, and a distinction is made
between imperceptible and semantically imperceptible per-
turbations. While the former survives image comparisons,
the latter are perceptible but have no impact on human ob-
ject recognition. A procedure is proposed to determine the
perceptibility of perturbations using Turk experiments, and
a dataset of both perturbation classes which enables repli-
cable studies of object manipulation attacks, is assembled.
Experiments using defenses based on many datasets, CNN
models, and algorithms from the literature elucidate the diffi-
culty of defending these attacks – in fact, none of the existing
defenses is found effective against them. Better results are
achieved with real world data augmentation, but even this
is not foolproof. These results confirm the hypothesis that
current CNNs are vulnerable to attacks implementable even
by a child, and that such attacks may prove difficult to defend.

1. Introduction
Convolutional neural networks (CNNs) trained on large

corpora such as ImageNet [5] have enabled significant ad-
vances in computer vision in recent years. While initially
popular for recognition, these models have shown to be re-
markably easy to train and transfer across vision tasks, and
are now almost universally used across computer vision.
Recently, however, this robustness has been questioned by
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some puzzling findings derived from adversarial CNN at-
tacks [14, 20, 18, 3, 17, 23]. Although CNNs have excellent,
even superhuman [9], recognition performance on randomly
internet-collected test images, it is quite easy to generate
images where they fail dramatically [25, 8]. In fact, most im-
ages that a CNN classifies correctly can be transformed into
images that it cannot classify, by the addition of a very small
adversarial perturbation. Most interestingly, this perturba-
tion can usually be made so small as to be imperceptible,
i.e. impossible to detect, by a human. This suggests that
the space of images correctly classified by most CNNs is, at
most, a countable dense subset of the space of images recog-
nizable by humans, e.g. similar to the relationship between
rational and real numbers.

This problem is of great concern for many applications.
For example, smart cars depend on CNNs to make decisions
that could have life or death consequences, security and
surveillance systems rely on CNNs for identity verification,
etc. The existence of many images capable of fooling CNNs
poses a significant challenge to such applications. This has
spurred interest in adversarial attacks [7, 14] and a literature
has emerged in the area, with many variants of the problem
being proposed. In result, there are at least four fundamental
dimensions along which adversarial algorithms can differ:
they can be 1) “white” [25, 8, 14, 20, 18, 3, 17] or “black”-
box [4, 30, 23, 6, 11], depending on whether knowledge
of the CNN model to attack is required, 2) “targeted” or
“non-targeted,” depending on whether the goal is to induce
the network to make specific errors [25, 20, 3] or to simply
make an error [8, 14, 18, 17, 30], 3) “digital” or “real-world”
depending on whether the examples used in the attack are
produced by an algorithm [25, 8, 23] vs. object manipula-
tion in the real world [14, 7, 1], and 4) “single model” or
“universal” depending on whether they aim to fool a single
network [14, 18, 3, 30] or many models [17]. Interestingly
enough, the relative difficulty of these problems does not al-
ways correlate with what would be intuitively expected. For
example, it appears that most of the attacks designed to fool
a particular CNN, e.g. AlexNet [13], also fool most other
CNNs [19, 26, 15, 16, 29], e.g. VGG [22], Inception [24],



or ResNet [10]. Similarly, some “black-box” attacks involv-
ing simple image transformations [6, 11] appear to be much
more effective than “white-box” methods that require access
to the CNN and optimization based on backpropagation style
of algorithms.

In general however, it can be quite difficult to compare
the merits of different algorithms. This is due to two main
problems. First, most methods use perturbations that cannot
be easily compared. While many authors rely on the standard
of an image that is “perceptually indistinguishable from the
original” to define a valid attack, it is not clear what the
boundaries of “indistinguishable” are and no attempts have
been made to define this concept. Instead, the standard
is usually met by adoption of a very conservative attack
strategy, e.g. the use of an “infinitesimally small step along
some gradient direction”. It is frequently unclear if the use
of larger perturbations would enable the same algorithm to
produce more successful attacks. Second, most adversarial
works do not even attempt to compare performance with
previous approaches. This is unlike most other areas of
computer vision, where the ability to compare algorithms is
considered critical to evaluate progress.

Recently, some works have started to address the second
problem through a strategy that we denote as the “arms race”.
This exploits the fact that any attack procedure can be trans-
formed into a defense, by 1) augmenting the training set, e.g.
ImageNet, with examples produced by the procedure and
2) fine-tuning the network. While not guaranteeing full ro-
bustness against the attack [15, 26, 12], this defense strategy
renders most attacks much less effective. Under the “arms
race” paradigm, a new attack strategy is considered state
of the art if it fools a network that implements defenses to
previously known attacks [28]. The “arms race” captures
the fact that, for practical applications, the only significant
attacks are those for which no defenses are available. How-
ever, while knowing the attack procedure enables a defense,
not all attacks are equally easy to defend. An important
variable is the defense’s cost. For example, attacks that re-
quire more computation to defend against are more costly
than attacks than can be thwarted with little computation.
Similarly, attacks have different costs. For example, white
box attacks can be rendered impractical by the simple use of
a proprietary CNN. Overall, the most concerning attacks are
those easiest to execute and hardest to defend against.

In this work, we consider the design of such attacks. We
argue that the most successful attacks are those that leverage
the limitations of computer vision, namely those based on
perturbations that are easily produced by people but cannot
be replicated by computers. This exploits the large imbal-
ance between the cost of attack and defense in terms of the
number of required examples. While an attack requires a few
well chosen examples, its defense requires augmenting the
training set with an extensive number of examples. Hence,

while attacks can be generated manually, those that cannot
be defended with computer generated examples are imprac-
tical to defend against. We then consider a set of image
perturbations based on variation of object pose. This is an
operation that can be implemented by a child (simply by
rotating an object) but is very hard to defend against, due
to the well known difficulty of synthesizing objects under
different poses [21, 27]. We consider attacks using both
small and large perturbations, due to camera shake (CS) and
pose variations (PV). However, the study of such attacks
requires a definition of which perturbations are valid. After
all, extreme poses can confuse even humans. Unfortunately,
common definitions, such as “infinitesimal gradient steps” or
imperceptibility on side-by-side image comparisons, are not
suitable for large perturbations. We argue that these can only
be declared imperceptible given an attack context and seek
definitions of imperceptibility suited for the object recogni-
tion context. This suggests a distinction between impercepti-
ble perturbations (IPs), which survive image comparisons,
and semantically imperceptible perturbations (SIPs), which
are perceptible on image comparisons but have no impact on
human ability to recognize objects.

Overall, this work makes three contributions to the study
of adversarial attacks on CNNs. The first is a dataset of im-
ages of multiple object classes under camera shake and pose
variation. The object classes are a subset of ImageNet, to en-
able the attack of ImageNet trained CNNs, and each object is
imaged with extensive coverage of both small (camera shake)
and large (pose variation) view variability. The second con-
tribution is a procedure to determine which perturbations are
imperceptible to humans, using Amazon Turk experiments.
The procedure is designed to support many attack contexts
and could be used to characterize many other types of at-
tacks. We consider two contexts, image and object retrieval,
that enable the differentiation between imperceptible per-
turbations and semantically imperceptible perturbations for
object recognition; these can be thought of as small vs. large
perturbations. A dataset containing camera shake and pose
variation perturbations of the two types is finally assembled,
to support the study of recognition attacks. A final contri-
bution is an extensive experimental study of camera shake
and pose variation attacks’ performance, against multiple
CNN models, trained on multiple datasets, and augmented
with multiple defenses from the literature. This shows that
pose attacks are highly successful against existing CNNs,
previous defenses are ineffective against them, and even data
collection can have limited effectiveness. Thus, while easy
to perform, pose attacks can be difficult to defend.

2. Prior work
There is now a significant literature on adversarial attacks.

The most popular setting is a non-targeted white-box digital
attack of a single model [8, 14, 18]. The attack is usually



an image perturbation based on an infinitesimal step along
the gradient of the loss used to train the model, evaluated at
the image [8, 14]. The simplest attacks reduce to one back-
propagation iteration, computing derivatives with respect to
the input image, and require a forward and backward pass
through the network [8]. Many variants have been proposed,
including different algorithms [20, 3, 16] or slight variations
on the problem. For example, [17] proposed similar tech-
niques for universal attacks, i.e. perturbations that fool many
models, and [25, 20, 3] considered targeted attacks. These
aim to induce specific errors, e.g. the classification of “ap-
ples” as “oranges”, using a somewhat more sophisticated
optimization. All these methods are digital and can, in prin-
ciple, be defended against by using the attack algorithm to
generate augmentation data to retrain the CNN.

More recently, there has been interest in attacks based on
object manipulation in the real world [14, 7, 1]. Some of
these address specific applications, such as recognition by
smart cars. For example, [7] investigated attacks based on
the addition of stickers to traffic signs. This is much less
general than the attacks now proposed, which can be applied
to any object. Others have investigated the manipulation of
images in the world, or the fabrication of objects with certain
properties. For example, [1] devised an interesting procedure
to fabricate objects that can consistently fool CNNs irrespec-
tive of viewing angle. While having some similarities to the
attacks now proposed, this setup is substantially more com-
plex than the one presented, which does not require object
fabrication. Fabrication raises the cost of attack, by requiring
access to knowledge of object fabrication, and drastically
reduces the cost of defense, since it relies on algorithms that
can be leveraged to produce defenses digitally. For example,
because the objects fabricated by [1] have digital textures,
their images can be rendered by computer. This is unlike real
objects and textures, which are well known to be difficult to
capture and render accurately under pose variation [27].

Perhaps most related to this work are previous efforts
based on image transformations. For example, [6] has shown
that black box attacks by simple image rotation can fool
CNNs more effectively than white-box attacks based on
gradient optimization. A recent extension of this idea uses
spatial transformer networks to synthesize image transfor-
mation attacks more general than rotations [28]. This work
again showed that image transformations are successful even
on networks that implement defenses against gradient at-
tacks. However, all these methods implement digital attacks,
using algorithms that can in turn be exploited to defend
against them. We propose a setting that generalizes these
procedures, relying on real world image manipulation. This
is much harder to defend against.

3. Using pose to attack recognition networks
There are several challenges to the study of adversarial

attacks. A meaningful attack requires two images: a true
positive x, i.e. a successfully classified image, and a per-
turbation x′. A first difficulty is that x′ should be, in some
sense, “identical” to x. Otherwise, it is illogical to ask the
classifier to assign it to the same class, and the attack is
ill-defined. We refer to this as the problem of attack validity.
Consider the popular framework of attacks based on additive
perturbations, x′ = x + ηδ, where δ is a function of the
gradient of the classification loss with respect to x [15]. In
the absence of a criterion to test whether x and x′ are “iden-
tical”, validity is sought by constraining η to be very small,
so as to make x′ visually indistinguishable from x. However,
this is not a full guarantee of validity, since a person with
infinite time can frequently identify the perturbed image.
There can also be moiré-like interference patterns that easily
give the perturbation away. Some methods attempt to ad-
dress the problem by thresholding the gradient, but this can
produce salt-and-pepper artifacts. In general, it is difficult to
guarantee that x and x′ are indistinguishable.

For these methods, the validity problem follows from
the lack of realism in the perturbations used for the attack.
We refer to this as the realism problem. The difficulty is
that δ is not a natural image. Hence, the methods above
simply produce images at the “edge” of the space of natural
images. While overly large steps along δ produce completely
unrealistic images, a small enough η guarantees they are
acceptable. Yet, because the perturbed images do not occur
in the real world, the perturbations must be very small for
the attack to remain valid. This leads to a third problem,
which is the small perturbation problem, i.e. exclusion of
attacks that are not immediate neighbors of the true positive.
For most applications, such attacks are a much stronger
concern than infinitesimal steps towards the edge of image
space. For example, the shake and pose attacks proposed
in this work can occur naturally during the operation of a
vision system. This also implies that they are much easier to
perform and thus much more likely to be executed – imagine
a world where any child can hack a robot simply by showing
it familiar objects in strange poses.

In summary, because there is lack of realism, validity
can only be guaranteed by small perturbations. This has
motivated a recent emergence of perturbations x′ = f(x)
where f is no longer additive. Various functions have been
proposed, from affine transformations [6] to affixing stickers
on images [7, 2], to building 3D objects [1]. Because they are
more realistic, the perturbations can be larger. On the other
hand, large realistic perturbations exacerbate the difficulty
of the validity problem since it is even harder to define an
“indistinguishable” transformation. For example, a simple
in-plane rotation can turn a ‘6’ into a ‘9’. Similarly, if one
is allowed to affix fur to a traffic sign, or repaint it, it will
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Figure 1: (a) Drone capturing images during flight. (b)
Examples of varying levels of camera shake as the drone
hovers. (c) Example images collected per viewing angle.

eventually stop being a traffic sign. While most works make
an effort to select perturbations indistinguishable from the
true positive in some form, this is never quantified. Beyond
potentially compromising the significance of these studies,
this makes it difficult to compare attacks.

In this work, we avoid these problems by introducing
a new attack strategy based entirely on real-world object
manipulations. This automatically eliminates the realism
problem, since all attacks are based on natural images. We
then propose a protocol to guarantee the validity of all at-
tacks, by verifying that all perturbations are imperceptible
to humans. Finally, we consider a domain (view transfor-
mations) that enables the characterization of the size of a
perturbation. This enables the study of both small and large
perturbations. We next discuss these contributions in detail.

3.1. Camera shake and pose manipulations

The ultimate goal of this work is to explore the space
of attacks that are easy to perform (sometimes even arising
naturally from real-world vision systems) but difficult to
defend. The idea is to exploit image transformations that
can be easily performed in the real world but are hard to
replicate by computer. This leverages the fact that while
an attack may be performed with a single example, most
attacks can only be defended by training the classifier with
many examples. When example collecting is costly, the de-
fense becomes impractical. In this context, digital attacks
which use algorithms to produce examples are easier to de-

fend than real world attacks involving image manipulations
not replicable by computer. Despite significant advances in
photo-realistic rendering, it is still not possible to synthesize
truly realistic examples from most object classes, at least
without a significant investment in a sophisticated computer
graphics infrastructure, rendering experts, etc. Hence, at-
tacks with examples of objects under novel views or novel
imaging conditions are difficult to defend. An additional
benefit of these attacks is that they make it relatively easy
to manipulate perturbation size, which correlates with the
degree of view change. We illustrate this by introducing a
family of attacks ranging from small transformations due to
“camera shake” (CS – small variations of camera position) to
larger transformations due to “pose variation” (PV – changes
in viewing angle). These attacks are also particularly im-
portant because they are trivial to perform. For example, a
child can shake a camera or rotate an object. In fact, they
are inevitable in certain domains of computer vision, such as
robotics, where objects can appear in many 3D orientations
and the vision system is subject to nuisances such as shaking
due to robot movement.

The first contribution of this work is a dataset to enable
replicable studies of camera shake and pose variation attacks.
For this, we relied on a drone-based imaging setup. A drone
was flown around an object, as illustrated in Figure 1a, us-
ing markings on the ground to define picture taking stops
at regularly spaced intervals. By collecting images at these
stops under alignment with the markings on the ground, the
drone assembled a set of views of the object corresponding
to different orientations of the object in 3D. We refer to these
as “object poses”. Examples of multiple poses of an object
are shown in Figure 1c. Within each stop, the drone was
allowed to hover and collect several images of the object, as
shown in Figure 1b. Due to the small hovering motion, many
of these images are indistinguishable to the inattentive eye.
They show the same pose of the same object, varying by very
small translations of the camera and some amount of motion
blur. We refer to this as “camera shake”. The procedure was
repeated for 20 objects per class from 23 different object
classes. To facilitate attacks on existing object recognizers,
these are classes represented in the ImageNet dataset, where
the recognizers are trained. Overall, the dataset contains 30
camera shake images per pose and 8 poses for 460 objects,
totaling 110,400 images. It is split into a defense dataset
containing 16 objects per class and an attack dataset contain-
ing 4 objects per class. The defense dataset can be used to
learn defenses against the proposed attacks. Each object is
furthermore assigned a “frontal” pose by visual inspection,
e.g. the frontal pose of the telephone in Figure 1c is that in
the upper left corner. It should be noted that this setup is
only necessary to enable replicable studies of the proposed
attacks and to collect data for defense purposes. The attacks
themselves can be performed by simply rotating objects.
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Figure 2: Turk experiment. (a) True positive (TP) x, shown
for 750 ms. (b) Distractor task: count dots of some color. (c)
After correctly counting, x′ shown for 750 ms. Then, turkers
asked if the image (object) has changed.

3.2. Characterizing indistinguishable perturba-
tions

A difficulty of real world attacks, especially those involv-
ing larger perturbations, is to guarantee their validity. After
all, under extreme viewing angles, objects can be hard to
recognize even for humans. The second contribution of this
work is a replicable procedure, based on Amazon Turk ex-
periments, to characterize indistinguishable perturbations
(IP). We start by proposing that perturbations can only be
declared indistinguishable within a certain application con-
text. For object recognition, we identify two contexts of
interest. The first is image retrieval (IR). This addresses the
question of whether a person can distinguish two images.
However, we do not pursue the forensic definition of distin-
guishability commonly used in the literature. Instead, we
limit the resources available to the person, by asking them to
compare the perturbation to an image they have committed
to memory. This is more closely related to object recognition
than forensic comparisons.

The setup is illustrated in Figure 2. A turker is shown the
true positive x for 750 ms (see supplementary materials for
details) and asked to memorize it. The object disappears and
the turker is asked to count the number of dots of some color
in a 2x3 grid. This is a distractor task to prevent a purely
iconic matching of image details. A second image x′ is fi-
nally shown for 750 ms, and the turker is asked to indicate if
x′ was the image seen earlier. The second image can be of
four types: the true positive x (15% of the time), a perturba-
tion of x due to camera shake (35%), a perturbation of x due
to a pose variation (35%), or an image of a different object
(15%). All images used in this experiment are from the attack
dataset of the previous section. From 30 frontal pose images,
examples randomly sampled (with replacement) are used as
the true positive per object. Camera shake perturbations are
also “frontal” poses. Given a true positive, an image pair is
created by sampling one of the 29 remaining frontal poses of
the object. This procedure was used to produce 70 camera
shake pairs per object. Pose variation perturbations use im-
ages from all object views. The set of perturbed images was
created by randomly sampling 10 images from each pose,
excluding frontal. Finally, for different object, examples

were sampled randomly from frontal poses of other objects
which belong to different classes. A probability of error was
recorded per type of x′. These are denoted pTP , pCS , pPV ,
and pDO, respectively. The values of pCS and pPV are used
as indistinguishable perturbation rates (IPR) for camera
shake and pose variation perturbations. A high indistinguish-
able perturbation rate implies that turkers are not able to tell
apart the perturbed x′ from the true positive x. pTP and
pDO are upper and lower bounds for the indistinguishable
perturbation rate, respectively. For increased accuracy, each
image-perturbation pair was evaluated by 3 turkers. A final
quality control threshold was imposed per turker: those who
scored above 10% for pDO and those who did not score at
least 90% for pTP were excluded, as evaluation is trivial
in these cases. For the remaining image pairs, those with
less than two identical evaluations were eliminated. The
indistinguishable perturbation rate was finally determined
from the remaining evaluations, by majority vote.

So far, the experiments test if turkers can distinguish per-
turbed images. This is informative for image retrieval, but
ultimately not the goal of object recognition. For example,
the rotation of a digit by 30o is a very perceptible image
transformation. While most humans can easily tell the image
has been rotated, this makes little difference for recognition.
An equally large percentage of the population will be able
to effortlessly recognize the rotated digit. In other words,
recognition is invariant to the perturbation. We argue that,
for recognition, it is also important to define the notion of
semantically indistinguishable perturbations (SIPs). These
are perturbations that may be noticeable but do not alter
the image semantics. Semantically indistinguishable pertur-
bations differ from indistinguishable perturbations in that
they are tied to the semantics of interest for an application.
For example, while a smart car only cares about the pres-
ence/absence of pedestrians on the road, a face recognizer
aims to determine the person’s identity. Hence, replacing the
true positive by an image of another person is a semantically
indistinguishable perturbation for pedestrian detection but
not for face recognition.

An interesting property of the experimental setup above
is that it can be extended to semantically indistinguishable
perturbations by simply modifying the context of the exper-
iment. This is done by changing the question asked to the
turkers. Rather than asking them if x′ is the same image as x,
they can be asked if it is an image of the same person, object,
animal, scene, or whatever the semantics of interest are for
the application. In this work, we consider the generic object
recognition (OR) context, asking the turkers if the two im-
ages are of the same object. The probabilities pCS and pPV

then become semantically indistinguishable perturbation
rates (SIPR) for camera shake and pose variation perturba-
tions. They capture the degree to which the perturbations are
imperceptible for OR. Note that a large pose transformation,



clearly perceptible for image retrieval can easily be imper-
ceptible for object recognition. This difference is captured
by the two questions (is this the same image? vs. is this the
same object?) that set different contexts for the experiment.

In summary, the probabilities pCS and pPV can be in-
distinguishable perturbation rates (IPR) or semantically in-
distinguishable perturbation rates (SIPR), depending on the
context (image retrieval or object recognition respectively).
Table 1 summarizes the rates observed on the Turk exper-
iments. Several conclusions can be taken from the table.
First, turkers’ scores were excellent when spotting replicas
of the true positive (IPR > 99%) or rejecting images from
different objects (SIPR ≤ 1%). This suggests that the exper-
imental protocol is robust. Second, all rates were lower for
pose variation than for camera shake. This was expected, be-
cause pose variation induces larger image variations. These
results confirm the hypothesis that camera shake is a small
perturbation, while pose variation is a larger perturbation.
Note that only 7% of the pose variation perturbations were
indistinguishable perturbations, while this held for 72% of
the camera shake perturbations. Finally, it is clear that in-
distinguishability depends on context. While only 72% of
the camera shake perturbations were indistinguishable per-
turbations, 92% were semantically indistinguishable pertur-
bations. Similarly, while only 8% of the pose variation per-
turbations were indistinguishable perturbations, 82% were
semantically indistinguishable perturbations.

3.3. Attacks and defenses

The third contribution of this work is a study of the diffi-
culty of defending attacks based on real-world object manip-
ulations. This is based on the image pairs declared as indis-
tinguishable by the Turk experiment 1. While experiments
were performed for both indistinguishable perturbations and
semantically indistinguishable perturbations, we report se-
mantically indistinguishable perturbations only, since these
are the most relevant perturbations for object recognition.
Indistinguishable perturbation results are discussed in sup-
plementary material. Three datasets were used to imple-
ment all defenses: 1) a subset of ImageNet containing all
object classes used for attacks, denoted “ImageNet,” 2) a
subset of the defense dataset of Section 3.1 containing only
frontal pose images, denoted “Frontal,” and 3) the entire
defense dataset, denoted “All”. Every attack was performed
on AlexNet [13], ResNet34 [10], and VGG16 [22].

To evaluate the impact of different object manipulations,
the attacks were implemented with both camera shake and
pose variation semantically imperceptible perturbations. For
each true positive x, the associated perturbation x′ was fed
to the classifier and recognition rates (RR) rCS and rPV

are recorded. Defenses were evaluated under the “arms
race” strategy, by synthesizing examples with different attack

1All data collected in this work will be made available publicly.

IPR (%) SIPR (%)
(Image Retrieval) (Object Recognition)

pTP 99.7 99.8
pCS 72.4 91.6
pPV 7.5 81.5
pDO 0.2 1.0

Table 1: Turker imperceptibility rates for true positive (TP),
camera shake (CS), pose variation (PV), and different object
(DO) pairs. For image retrieval task, indistinguishable per-
turbation rates (IPR) is considered, while for object recogni-
tion task, semantic IPR (SIPR) is used.

methods and retraining the network on a dataset augmented
with these examples. We considered methods from the two
broad categories discussed above: 1) transformation based
and 2) gradient based.

1. Transformation based

• Affine: Random affine transformations with rota-
tion less than 15 degrees.

• Blur: Gaussian blur kernel with random standard
deviation in [0, 0.6].

• Blur-Affine: Combination of affine and blur.
• Worst-of: The worst-of-K method of [6]. Ten

affine transformations are randomly sampled and
the one of highest loss is selected.

• Color Jitter: Image saturation and hue transfor-
mation according to [11].

2. Gradient based

• FGSM: The fast gradient sign method of [15].

• ENS: The ensemble adversarial training method
of [26].

• IFGSM: The iterative fast gradient sign method
of [15].

3. Standard training is also experimented as baseline for
comparison. The standard training method included
random cropping and random horizontal flipping. The
learning rate was set to 0.001.

4. Experiments
4.1. Implementation

All experiments were conducted with Pytorch. For train-
ing process, we found that at most 20 epochs were enough
for the classifier to converge, and the maximum number of
epochs was set to this value. Vanilla SGD was used as the
optimizer and momentum was set to 0.9 for all classifiers.

https://pytorch.org/


Table 2: Recognition rates for camera shake and pose variation semantically indis-
tinguishable perturbation attacks, under different defense methods and datasets.
Recognition rates are averaged over AlexNet, ResNet34 and VGG16.

Attack
CS PV CS PV CS PV CS PV

Defense ImageNet Frontal All Avg
None 73.7 47.2 82.0 63.7 87.1 79.1 80.9 63.3

Tr
an

sf
or

m
at

io
n Affine 71.8 45.1 83.4 58.8 85.2 76.5 80.1 60.1

Blur 74.2 45.2 84.8 64.1 86.9 78.3 82.0 62.5
Blur-Affine 75.4 47.5 83.5 60.0 88.0 76.6 82.3 61.3

Worst-of 73.0 47.1 83.8 63.0 86.4 76.1 81.0 62.0
Color Jitter 74.5 45.5 86.4 61.6 87.1 79.1 82.7 62.0

Avg 73.8 46.1 84.4 61.5 86.7 77.3 81.6 61.6

G
ra

di
en

t FGSM 72.9 49.2 84.7 61.1 83.2 74.3 80.3 61.5
ENS 75.7 46.3 83.6 58.1 81.9 72.8 80.4 59.0

IFGSM 71.8 47.0 82.8 55.5 83.3 70.0 79.3 57.5
Avg 73.5 47.5 83.7 58.2 82.8 72.3 80.0 59.3
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Figure 3: Per class RR for
CS/PV SIP attacks.

4.2. Qualitative results
Attack and defense efficiency: A preliminary observa-

tion was that the attacks had similar effect on the three net-
works. While some models have higher accuracy than others,
the relative drop in accuracy due to the attacks were nearly
identical. Hence, for brevity, we only discuss average accu-
racy of the three models here. More detailed, per-model, re-
sults are given in the supplement. Table 2 presents the recog-
nition rates of camera shake and pose variation manipulation
attacks, for networks with various defenses. Each defense
was implemented on the three defense datasets and recog-
nition rates are presented per defense method and dataset.
Since all perturbations have been declared semantically indis-
tinguishable perturbations by turkers, the human recognition
rate is 1 on these experiments (under the assumption that
turkers could correctly classify the true positive).

Various conclusions can be drawn. First, as expected,
pose variation is the more dangerous attack. For standard
ImageNet classifiers the recognition rate drops to almost half
(from 70s to 40s), independently of the defense implemented.
Second, no defense method stands out. While gradient meth-
ods achieve best performance for ImageNet training, trans-
formations have superior performance for Frontal and All
training. Within each category, relative performance varies
with dataset and perturbation type. On average (as seen in
the last column of the table), Color Jitter is the top defense
against camera shake. Third, none of the defense algorithms
improves significantly on no defense. In fact, the absence
of defense is the best defense against pose variation, and
close to the best (80.9 vs. 82.7) against camera shake, on
average. Fourth, data collection is a much more effective
defense than algorithms. Independently of the algorithm,
recognition rates increase significantly from ImageNet to
Frontal (10+ points) and increase further from Frontal to
All (2 points). However, even the collection of data with
camera shake and pose variation perturbations fails to fully

defend against real-world object manipulations. The best
performance against pose variation (none) has a recognition
rate of only 63.3%. For camera shake the top recognition
rate is 82.7%. All these observations support the hypothesis
that real-world manipulations are a very effective tool to
attack CNNs. Besides being trivial to perform, they can be
very hard to defend. Since the collection of real data fails to
produce a foolproof defense, it is questionable that digital
defenses could fully neutralize these attacks. Clearly, simple
digital defenses such as Affine or Blur transformations are
ineffective.

In-depth comparisons of the table also challenge some
common notions in the adversarial literature. One striking
effect is the reversal of performance between gradient and
transformation based methods with the defense dataset. Gra-
dient methods work better on ImageNet, but are not effective
when camera shake and pose variation perturbations are
added to the defense set. This supports the hypothesis that
they mostly push examples to the edge of the natural image
space. Better coverage of these regions, by camera shake and
more camera views, eliminates these methods’ gains. For ex-
ample, the average recognition rate of the gradient methods
on the All defense dataset is 4 to 7 points weaker than using
no defense algorithm at all. Transformation based methods
perform significantly better on this dataset. In the adversarial
literature, IFGSM and ENS have also been claimed to out-
perform FGSM. This is because IFGSM generates stronger
adversarial examples and ENS decouples the adversarial
example generator for the defender (by adding adversarial
examples from a third party to the training set). However,
this is nearly the opposite of the results on Table 2. On
average, FGSM outperforms IFGSM and ENS. Again, this
is likely due to the real world nature of the attacks. The
fact that IFGSM and ENS are better defenses against digital
attacks, seems to translate into no benefits for real world
attacks.



Table 3: Examples of IPs and SIPs, for CS and PV pertur-
bations, that fool many classifiers. In all cases, TP is left,
perturbation right. Also shown is ground truth class and #
of classifiers fooled (out of 81, see supplementary material).

IPs
CS PV

TP: Hat Fools 16 TP: Bowl Fools 36

TP: Remote Fools 21 TP: Hat Fools 20

SIPs
CS PV

TP: Car Fools 13 TP: Plane Fools 20

TP: Keyb. Fools 13 TP: Car Fools 32

Objects: It is also pertinent to ask which types of objects
lead to more successful attacks. Figure 3 shows the recogni-
tion rate of camera shake and pose variation perturbations per
object class. While camera shake leads to higher recognition
rates for all objects, the recognition rate trend is similar for
camera shake and pose variation. This suggests that attack
efficiency is indeed determined by object properties. Finally,
a “lack of symmetry” seems to be the object property most
predictive of successful attacks – symmetric objects, such
as bottles, lamps, and bowls are less effective attackers than
less symmetric objects like telephones, radios, and trains.

Universal attacks: A final question is which attacks fool
a large number of classifiers. Table 3 shows some exam-
ples of the most successful perturbations from this point
of view (more in supplementary material). Some interest-
ing observations can be made. First, perturbations that
are clearly noticeable under a forensic comparison (side-
by-side images, infinite time) can become indistinguish-
able under the memory recall paradigm of Figure 2. Take
the “bowl” and “hat” examples for instance, which were
deemed indistinguishable perturbations by the turkers; the
fact that these perturbations were deemed the same image
as the true positive shows that the standard practice of de-
termining attack validity by forensic comparisons is poorly
suited for object recognition. Second, it appears that per-
turbations of all sizes can fool a large number of models.

Table 4: Classifier accuracy
for crafted vs random attack
examples.

Dataset ImageNet Frontal
Attack CS PV CS PV

Random 73.7 47.2 82.0 63.7
Crafted 51.3 33.0 66.2 49.3

Note that the perturba-
tions shown range from
“insignificant” (almost im-
perceptible even on a
forensic comparison, e.g.
“remote”) to “large” (sig-
nificant pose variations,
e.g. “car” on the bottom
right). Overall, it appears
that even very elementary natural perturbations can fool
state-of-the-art classifiers.

Crafted attacks: Since the proposed attack happens nat-
urally in the real world, one might criticize that this is differ-
ent from Lp norm based attacks, which can be designed and
crafted. Inspired by [6], which generates attacks by rotating
the image and proposes a worst-of-K method to pick the
most adversarial transformation , we implemented this for
our attacks with K = 5 similar to the set up in [6]. Table 4
presents the results for no defense algorithm on random and
crafted attack examples. These CS/PV attacks are intention-
ally crafted, by picking the CS/PV instance most likely to
fool the network. They are more effective than the random
attacks as expected.

5. Conclusion
This work makes several contributions to the study of

adversarial attacks that are easy to execute but difficult
to defend, using a new setup based on real-world object
manipulations. Unlike the standard practice in the literature,
we considered both small and large perturbations, generated
by camera shake and pose variation, and introduced a
procedure for systematic collection of such perturbations.
This was complemented by a replicable procedure to
measure the imperceptibility of perturbations, using Turk
experiments. These contributions enabled the creation of
a dataset of small and large perturbations, imperceptible
under two contexts of interest for object recognition.
Experimental results comparing defenses based on many
datasets, CNN models, and algorithms from the litera-
ture elucidated the difficulty of defending these attacks.
None of the existing defenses were effective against
them, and while better results were achieved with real
world data augmentation, this is costly and not foolproof.
These results suggest that more research is needed on
defenses against “easy to perform” attacks and that the
data now assembled can play an important role in this regard.
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