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Introduction 3D-ODDS Dataset

* Recent progress has been made in reconstructing 3D  REFINE neural network learns to displace vertices of reconstructions, by + The 3D Object Domain Dataset Suite

object shape from images, I.e. single view 3D exploiting silhouette and viewpoint information. (3D-ODDS) is a hierarchical real-world
reconstruction.
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« Main signal is leveraging rendered 3D mesh match input image silhouette. dataset ideal as a benchmark for

o iffi ' i . . L rigorously testing invariance.
But due to the difficulty of collecting large datasets in the *  Symmetry, smoothness, and displacement based losses provide regularization J Y J

wild with 3D ground truth, it’s_, still v_ery challenging for to prevent degenerate solutions. » Contains 200,000 images and 331
generalize across domain, viewpoint, and class. corresponding 3D meshes.

« Operates at test time, on-the-fly per mesh. Weights reinitialized & reoptimized

* To address this we propose REFINE, a postprocessing per mesh, taking about 400 iterations to converge (about 30 seconds per * 3 disentangled factors of variation: class,

mesh refinement step easily integratable into the pipeline mesh). viewpoint, and domain.
of any black-box method.

* About 20 different classes, 25 object
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