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ABSTRACT

We introduce a spatiotemporal model-based algorithm ca-

pable of providing estimates of optic flow which are coher-
ent along a set of video frames. The algorithm is based
on a spatiotemporal motion model that consists of a qua-
dratic constraint in time and an affine constraint in space.
Optic flow is computed through a delayed-decision process
that incorporates knowledge about both image correlation
along time, and the goodness of fit to the underlying mo-
tion-model. The temporal coherence and parametric nature
of the recovered optic flow can facilitate interactive access
to the video stream and improve the efficiency of tasks such
as video compression, interpolation or classification.

1. INTRODUCTION

Current digital video representations, such as MPEG or
H.261, are geared towards compression efficiency, giving less
emphasis to the semantic content of the video sequences or
the ability to perform interactive operations such as brows-
ing, filtering, sorting, or, more generally, allowing non-linear
access to the video stream. The inadequacy to perform such
operations is a consequence of a purely statistical model of
the video sources and a computational model that is highly
temporally localized, considering no more than two or three
frames of the video sequence at a time.

Recent research efforts have addressed the issue of ob-
taining semantically more meaningful source models [1, 5].
These semantic models typically represent some of the scene
attributes (such as motion and texture) in a parametric
form, leading to a highly compact representation. Com-
pactness is important, not only because it allows for efficient
transmission, but also because it reduces the complexity of
the analysis. Parametric models provide a transformation
from the pixel space, to a smaller parameter or feature space
where tasks like image segmentation are easier to perform.

Most of these efforts have, however, been carried out
within the temporally localized computational model re-
ferred above. Texture analysis is typically performed in
stills, and even motion analysis algorithms only occasion-
ally rely on more than two frames at a time. This limited
temporal support significantly diminishes the capability of
these representations to provide some of the cues necessary
for interactivity.
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The ability to access non-linearly a digital video stream
is a function of the ability of the underlying video repre-
sentation to support a description of significant temporal
events. These significant events are, in general, associated
with temporal discontinuities either in the form of scene
discontinuities (scene cuts) or motion discontinuities within
the same scene. As an example of the information provided
by motion discontinuities consider a video shot of a base-
ball play. A typical play would be described by a human
as: ”pitcher throws the ball, batter hits the ball, ball falls
on the grass, center-fielder picks up the ball, center-fielder
throws the ball, 1°¢ base-man catches the ball and tags run-
ner”. Notice that the significant events in this sequence are
all associated with discontinuities in the motion of the ball,
and the ability to detect and signal those discontinuities is
paramount for a representation that aims to provide hints
about scene content to the user, or to allow the user to
browse through the sequence in a non-linear fashion.

The ability to detect motion discontinuities can only be
provided by a representation with a sense for motion conti-
nuity, something which is hard to achieve within the tem-
porally localized computational model described above. In
this work we relax the temporal localization constraint by
introducing a spatiotemporal motion model that is valid for
a sequence of frames, but retains the compactness associ-
ated with parametric representations. We believe that the
spatiotemporal motion-model will make the task of detect-
ing motion discontinuities feasible. Other tasks that can
benefit from the larger temporal support associated with a
spatiotemporal motion representation include compression,
motion-based interpolation, classification, and generation of
salient stills from video [3].

2. OPTIC FLOW ESTIMATION

The spatiotemporal optic flow estimator is based on the
concept of motion paths. A motion path p{) = (:c,(f), y,gf))T
is the locus of coordinates in the image plane onto which
a point k in the 3D world is projected as time evolves. To
compute motion paths we rely on a quadratic motion model
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where az, ay, v, and vy are the horizontal and vertical com-
ponents of the velocity and acceleration associated with mo-
tion path k. Equation 1 can be seen as a second order ap-



proximation to the Taylor series expansion of p,..v in the
neighborhood of ¢.

The straightforward application of the quadratic motion
model does not lead to accurate recovery of the optic flow
because it does not guarantee spatial smoothness. Without
an additional spatial constraint, neighboring motion paths
are free to take intersecting trajectories, particularly in the
presence of noise. There is, therefore, a need to combine
the temporal model with a spatial smoothness constraint,
and we show next 2 that this is possible if we impose an
affine constraint [5].

Proposition 1 Consider a quadratic motion path p(t+5t)
determined by equation 1. Then p(H'M) is an affine trans-
formation of p(t) if and only if each of the motion param-
eters Gr,,Any, Vs, ond Vs, 15 an affine transformation of

p,g). Le. for a motion path satisfying equation 1,
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3. DELAYED-DECISION OPTIC FLOW
ESTIMATION

A simple way to compute a motion path would be to com-
pute the optical flow between consecutive frames using any
of the conventional approaches and then, given a pixel in the
first image, follow the cascade of motion vectors starting at
that pixel. This would not be a very effective procedure be-
cause an incorrect choice of motion vector at a given frame
would originate an error for all subsequent motion vectors.

A better solution is a delayed-decision optic-flow estima-
tor. The principle is the same as above, but the motion
vectors are no longer chosen in a greedy manner. Instead
of keeping just the best motion vector at each instant, the
delayed-decision algorithm keeps the best M candidate vec-
tors. In this way, for each pixel in the first frame, it grows a
M-ary tree of possible motion paths through the sequence.
Each of these trees can later be searched for the best overall
motion path.

Given the noisy nature of real images we cannot expect
the motion model to be exactly satisfied by any of the possi-
ble paths. We can however use the closeness of a given path
to the motion model as an additional criterion for the best
path selection. For this, we use a least squares framework.

3.1. Least squares fit

Combining discretized versions of equations 2, and 1; as-
suming, without loss of generality, that the motions paths
start at the instant 0, that each tree has depth K (sequence

2The proof of the proposition can be found in [4]

of K frames) and that there are P motion paths; and let-

ting Az = 2l — 2% we obtain [4]
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where k =1...P,andi=1... K.

In order to solve this system of equations we would need
to know simultaneously the values of all the coordinates as-
sociated with all the motion paths. I.e., we would need to
build all the trees associated with an object or image re-
gion before computing the fit to the motion model. Since
each tree has MX leaves and an object can cover a sig-
nificant portion of the image area, this approach would
rapidly become computationally infeasible. Fortunately, as
we demonstrate in [4], the least-squares solution to this sys-
tem of equations is separable in time and space, and the
overall least squares fit can be computed in two steps as
follows.

Discretizing the x-component of the system of equa-
tions 1, we obtain

A, =T [““w ]:TFM (4)
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where
T = A2i Ati ) AK/ = A:cLl] )
kK =1...P,and i = 1... K. We first compute the least-

squares solution to this system of equations [2]
P, = ("D 'T"A,. (5)
Now, from equation 2
Fo =Px Axasr,
where
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Combining the previous equations for all values of k, we
obtain

F, P,
: : Axar = N Ayar. (6)
Fp Pp
Given the least-squares estimate of F, obtained from
equation 5, the least-squares solution to this system of equa-

tions is ) )
Ar = (NTN) 'NTF, (7

3We analyze only the least squares fit to the £ component the
results are similar for the y component.



Figure 1. Top: Motion trajectories associated with unconstrained motion paths. Bottom: Trajectories estimated by the model-based
algorithm. In this example the affine model is restricted to translation and, in the first frame, the ball was manually segmented out of

the background.

The overall least-squares problem is, in this way, divided
into two smaller sub-problems. First, for each motion path
we find the vector of quadratic motion parameters that
solves equation 4 in a least-squares sense. Notice that for
this computation we only need to consider one tree at a
time. We then use the motion parameters associated with
all motion paths to find the least-squares affine fit A.g of
equation 7. I.e., we decouple the computation of the param-
eters relative to the temporal constraint from those relative
to the spatial constraint, without compromising the opti-
mality of the least-squares fit [4].

3.2. The algorithm

In this paper, we implement the delayed-decision motion
estimator with dense block matching. We start by applying
block-matching between pairs of consecutive frames, and
grow the motion trees by keeping the best M vectors at
each pixel. For each tree, we then select the path which
minimizes a cost function that incorporates both the cumu-
lative mean square block-matching error and the error of
the least squares fit to the motion model:

min (£®*) +ADP) (8)
Pk

where p, = [anm,amy,vnz,vmm]T is the vector of quadratic
motion parameters associated with the motion path p,[i],
L£P=) is the cumulative mean-square correlation error along

the path, and D) is the error of the least squares fit. We
next perform the second step of the least squares fit, this
time in the temporal dimension, using equation 7. In this
way, we impose the affine constraint in space, and from
proposition 1 the optical flow is affine for every frame in
the sequence.

4. SIMULATION RESULTS

The top row of figure 1 presents frames 1, 3, 6 and 9 of a se-
quence of 9 frames consisting of a bouncing ping-pong ball
and a textured background. The crosses superimposed on
the figure represent the trajectories followed by the motion
paths in the absence of motion model, i.e. when the best
motion path is simply the one which maximizes the corre-
lation across frames. Notice that, due to the textureless
nature of the ball, these paths tend to cross each other and
even follow a common route. Figure 2 depicts a typical mo-
tion path tree rooted in one of the pixels of the first frame,
and the least squares approximation after fitting the qua-
dratic motion model according to equation 5. This and the
remaining trees associated with the ball were then pruned
according to equation 8 and the resulting spatial motion
parameters fitted to the spatial affine model according to
equation 7. The spatial fitting is illustrated in figure 3.
Finally, the bottom row of figure 1 presents the trajectories
obtained with the model-based algorithm, superimposed on
the original sequence. The accuracy of these trajectories is
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Figure 2. a) tree of motion paths, b) least square approximations.

position while depth is associated with time.

very good, in contrast to that of the trajectories on the top
row of the figure.
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Least squares fit to motion model

In both graphs the vertical and horizontal axis represent image

Figure 3. Quadratic motion parameters associated with best
motion paths and associated affine fit. a) acceleration b) veloc-
ity. In these graphs the horizontal and depth axis represent the
spatial image coordinates and the vertical axis the value of the
motion parameter at those coordinates. Circles and crosses are
measured parameters while the lines represent the least squares
affine fits.



