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Abstract

The compact description of a wvideo sequence
through o single image map and a dominant motion
has applications in several domains, including video
browsing and retrieval, compression, mosaicing, and
visual summarization. Building such a representation
requires the capability to register all the frames with re-
spect to the dominant object in the scene, a task which
has been, in the past, addressed through temporally lo-
calized motion estimates. In this paper, we show how
the lack of temporal consistency associated with such
estimates can undermine the validity of the dominant
motion assumption, leading to oscillation between dif-
ferent scene interpretations and poor registration. To
avoid this oscillation, we augment the motion model
with a generic temporal constraint which increases the
robustness against competing interpretations, leading
to more meaningful content summarization.

1 Introduction

Given the ubiquity of bandwidth, connectivity,
storage, and computational resources associated with
modern communications networks, massive reposito-
ries of pictorial information start to appear through-
out them. The usefulness of such repositories will be,
to a significant extent, determined by the availabil-
ity of systems which can help users navigate through
them, and interact with or manipulate their content.

In the case of video databases, the magnitude of
stored information is by itself an overwhelming prob-
lem as on-line analysis of each frame in the video
stream becomes impractical, even if this analysis con-
sists only of very simple operations. There is, there-
fore, a need to develop procedures for the automatic
summarization of video content which can then be
used to speed up browsing and retrieval operations. Of
particular interest are methods capable of providing
visual summarization of the video streams, as these
summaries can be directly inspected by human users
of the video repository.

Due to this interest and the fact that visual summa-
rization of video sequences has application in a wide
range of other domains, a significant body of research
has been devoted to this topic in the recent past. The

fundamental idea is to compute a single image map
which is representative of the pictorial content of the
video sequence by warping all the frames contained in
it into a reference coordinate frame and somehow com-
bining their pixel intensities. Because different solu-
tions to the problem have evolved in different research
communities, with different applications in mind, the
resulting representations have received diverse names.
Among these are salient stills [6], video mosaics [8, 9],
video sprites [7], and video layers [11]!.

In spite of this diversity, all these procedures are
similar in the sense that they follow the following two
fundamental steps.

1. Fitting a global motion model to the motion be-
tween each pair of successive frames.

2. Computing the summarizing image map by accu-
mulating the information from all the frames after
they have been aligned according to the motion
estimates computed in the previous step.

In this paper, we show that relying on temporally
localized motion estimates limits the ability of these
representations to produce an image map that mean-
ingfully summarizes the video content. This is a di-
rect consequence of the fact that representations based
on temporally localized motion models cannot capture
the global characteristics of the video stream along
the temporal dimension. While the intensity map on
which they rely contains visual information summa-
rizing the entire sequence and the parametric motion
description is valid over the entire spatial extent of
any given frame, the underlying motion models ac-
count only for a highly localized temporal neighbor-
hood (usually a frame pair) of the spatiotemporal vol-
ume spanned by the sequence. Therefore, they provide
no guarantee of coherence along the temporal dimen-
sion, allowing motion estimates to oscillate between
competing scene interpretations and leading to poor
image registration.

While, strictly speaking, layering always includes the con-
struction of multiple image maps, the construction of each of
these can be implemented, once the scene is segmented into the
objects of interest, by the procedures discussed in this paper.



In this work, we introduce a truly global motion
representation, in both the spatial and temporal di-
mensions, by augmenting the motion model with a
generic temporal constraint that avoids this oscilla-
tion. The resulting model is parametric in both space
and time and can be fitted to the entire sequence at
once, with marginal increase in computational com-
plexity. Consequently, it locks to the motion which
is dominant over the entire spatiotemporal volume,
leading to temporal coherence and a significantly bet-
ter content summarization.

We would also like to point out that, while the focus
of this paper is on visual summarization, the advan-
tages of a parametric spatiotemporal motion represen-
tation are not limited to this domain. For example, the
fact that a compact description of the dominant mo-
tion throughout the entire sequence is available, also
makes the representation attractive for content-based
retrieval. Because our representation originates a sin-
gle image map and a single spatiotemporal parameter
vector for each sequence, it allows retrieval based on
either the map, the motion, or both. Motion based
retrieval is difficult when motion is characterized by a
large set of temporally localized estimates.

2 Content summarization by image
registration

The main assumption underlying procedures for
video summarization through image registration is
that there is a dominant motion among the motions
of the various objects in the scene. If there is a single
motion (e.g. a static scene and a moving camera) then
(assuming the motion model matches the true scene
motion) the summarization is perfect. If more than
one motion is present, the object with the dominant
motion is correctly aligned and the remaining objects
are “blurred out”. The result is a summarizing map
where the dominant object appears crisp and the re-
maining objects are substituted by ghostly versions
that provide a sense for the action in the scene.

One of the main limitations of the dominant motion
assumption is that it is not always straightforward to
determine what motion will be dominant. To illus-
trate this point, consider a sequence of a bird flying in
a region of uniformly blue sky. Because the sky has no
texture and, therefore, any motion will be a good fit
for the sky region, the dominant motion will be that
of the bird. If, however, the sky is textured (e.g. it
contains clouds or stars) or there is also a tree in the
background, the motion of the bird will no longer dom-
inate. In practice, which motion is dominant depends
on the relative sizes of the objects, how they are tex-
tured, the relative amplitudes of their velocities, and

the occlusion relationships originated as they move.

The problem is that all these factors change as the
sequence progresses and the dominant motion may not
be dominant at all instants. This is illustrated by the
simple example of Figure 1 which displays three snap-
shots of a sequence composed by two squares of simi-
lar texture but different sizes, translating at the same
speed in opposite directions. When there is overlap,
the smaller square (B) occludes the larger one (A).

Since all other factors are equal, the dominant mo-
tion is that of the square with the largest number of
visible pixels, and A will dominate for most of the se-
quence. However, in the period where B occludes A
(depicted by the center snapshot), there may be sev-
eral frame-pairs for which B dominates. Hence, as
shown in Figure 2, the estimate of the dominant mo-
tion will switch between the two possibilities as the
sequence progresses. In result, neither of the two ob-
jects will be correctly aligned in the resulting summa-
rizing map, i.e. both will be blurred-out to at least
some extent, and it will be much harder to perceive
the scene dynamics from this map than if the registra-
tion would have been performed with respect to one
of the squares alone.

The importance of integrating motion estimates
throughout the sequence has been realized by Irani
and co-workers in [5]. They propose a recursive pro-
cedure for building the map on the fly where, for each
frame, they compute the best affine motion estimate
between the current map estimate and that frame.
The map is then registered with the frame and up-
dated by taking a weighted average of the two. The
rationale is that, as the sequence progresses, the map
locks onto the object of dominant motion and the
other objects are blurred out. This, in turn, reinforces
the lock?.

In the case of the figure, such a procedure would
start by following A, and B would initially be wiped
out of the summarization map. However, as soon as
there were overlap between the two squares, some of
B’s texture would start to be included as well. By the
time of the center snapshot in the figure, depending on
the rate at which old information is discarded from the
map and the velocities of the two objects, the map’s
texture would either resemble that of A, that of B or
something in between. While in the first case every-
thing would go well; in the latter two, B would, with
high likelihood, be tracked throughout the rest of the
sequence, leading to a situation even worst than that

2We should note that their work was not aimed at recov-
ering an image map for summarization, but instead to obtain
improved motion estimates and segmentations.



Figure 1: Three snapshots of a sequence where temporally
localized motion estimates fail to identify the dominant motion.

Figure 2: Velocities of each of the objects in the sequence
of Figure 1 as a function of time. Dashed lines indicate the
paths, in velocity space, of each of the squares. The solid line
indicates the trajectory of the dominant motion, according to
the temporally localized motion model. The occlusion near t =
T'/2 leads to a switch regarding which motion is dominant.

of Figure 2.

Even though temporal integration is a correct step
towards eliminating the uncertainty originated by sev-
eral competing scene interpretations, it does not com-
pletely address the difficulties created by the fact that
different interpretations may become dominant at dif-
ferent time instants. This issue can only be addressed
through representations capable of capturing domi-
nance over the entire spatiotemporal volume spanned
by the sequence. We next introduce a spatiotempo-
ral motion model which leads to representations with
such properties.

3 The spatiotemporal motion model

We start by assuming that the motion between con-
secutive frames in the video sequence can be charac-
terized by an affine transformation, i.e.

A = ¢ +cjzi+cy; (1)
4 5 6
dijpn = ¢+ T+ ey, (2)

where j is the frame number, x; = (z;,y;)T are the

image coordinates of pixel x, and

T T

djjr1 = (df 541,45 41)" = (@j41 — T4, Y541 — Yj)

is the displacement applied to the pixel from frame j
to frame j + 1. However, in order to guarantee con-
sistency of motion estimates across time, we augment
the motion model by imposing a generic temporal con-
straint: each pizel follows a path along the sequence
according to a smooth trajectory characterized by a

(low-order) polynomial, i.e.

M
Xj =Xo+ ) ith, 3)
=0

where t;, is the time-stamp of frame k. The number
M +1 of terms of this polynomial provides a trade-off
between the degree of smoothness of the approxima-
tion, and the capability of following the pixel’s trajec-
tory. If M +1 = N, where N is the number of frames
in the sequence, the model can follow exactly any pos-
sible trajectory, but provides no extra constraint other
than those already imposed by the affine model. On
the other hand, if M = 0 the model forces the pixel to
land in the same location at every frame, i.e. allows
no motion. In our experience, a low-order polynomial
provides a good compromise between these factors -
we have used M = 2 in the experiments reported in
section 5. The framework is, however, generic and
valid for any value of M.

In appendix A, we show that, given the temporal
constraint of equation (3), the motion between succes-
sive frames will be affine if and only if the polynomial



coefficients ¢; are themselves the result of an affine
transformation of xq, i.e.

o7 = pi+pimo + piyo (4)
! = pi+pizo+ piyo. (5)

Substituting these equations in equation (3) and
grouping terms, we obtain

)+ Z pits)mo + Z piti)yo,  (6)
=0
dg,j = Z + Z pz ;CO + Z pz ] yO; (7)

=0 =0

M

ds; = (o}

i.e. the displacement of the pixel between frames 0
and j is the sum of M + 1 affine transformations with
coefficients proportional to the M + 1 powers of ¢;.
Defining

®x)=10 0 0 1 @ w| ®
T]:[t;wle t]IG IG];
and
pz(pM7"'7p0)T7

where I is the identity matrix of order six, and
pi = (p},...,p9)T,i = 0,..., M, the spatiotemporal
trajectory of the point can be written in a compact
form as

xj = X0 + ®(x0)Tjp = ¥;(x0)- 9)

4 Estimation of the model components

Given a video sequence Fi,...,Fn, we model each
of the frames, Fj, as the outcome of a Gaussian pro-
cess with mean described by the affine warping of the
summarizing map S, temporally co-located with F;.
From equation (9), and dropping the subscript of %,

1 (F; (¥ (%) =8(x))2

i®)lp, S(x)) = e 27

- V270

P(F;(T

Assuming that each of the Gaussian variables is in-
dependent, the joint density for all the pixels in the
sequence is characterized by

P(Fi,...,Fn|P,S) x exp Z(}'j(lllj(x)) - S8(x))?

Jix

In order to determine the parameters of the spa-
tiotemporal motion model and the summarizing map

S which best explain the observed image data, we rely
on a Maximum Likelihood (ML) framework, according
to which the optimal motion parameters and summa-
rizing map are those which minimize the cost function

J(P,8(x) = Y_(Fi(x + ®(x)T;p) - S(x))>. (10)
j,x
The minimization is performed by iterating be-
tween the estimation of the motion parameters given
an estimate of the summarizing map, and the updat-
ing of the map given the new parameter values. Given
an estimate for S, the optimal new set of parameters
p'is
p' = min 7 (p, S(x)) (1)
and, given this new set of parameters, the updated
estimate of § is, for each location of the map,
§'(x) = min 7 (p', S(x)). (12)
S(x)
4.1 Estimating the motion parameters
To minimize equation (11) we rely on the Gauss-

Newton method [2] which, as shown in appendix B,
leads to an iterative procedure of the form

p"t! = pF +4Fd, (13)
where
2T T TR ()
Z@ )TV Fj (U5 (%) VI F; (2 (x)) 8(x),
(15)
B = 3 T[F (B (x)) - S(x)]8(x)7 VaF; (T (x)),
) (16)

F;(®%(x)) is the result of warping the j** frame with
the current estimate of the transformation associated
with it (%), V, the gradient with respect to the im-
age coordinates, and 7y a scalar determined by a line-
search.

The procedure for the estimation of the spatiotem-
poral motion parameters can therefore be summarized
as follows.

1. Set ¥ = 0. Compute an initial parameter esti-
mate p®. Our initialization strategy is to com-
pute the affine transformations between succes-
sive frames in the sequence, through a variation
of the method proposed in [1], and then find the
p° that provides the least squares fit to the tem-
porally localized estimates.



2. For each frame in the sequence, F;,j =1...N:

e warp the frame according to the current esti-
mate of the motion parameters p* and equa-
tion (9);

e compute the spatial gradient of the warped
frame, foj(‘l';?(x));

e compute of and B} according to equa-

tions (15) and (16).
3. Compute d*.

4. Find +* by a line search. In our implementation,
this is done by considering vF =27,1=0,...,4,
computing p; ' = p* + yfd* for every I, and

choosing the one which minimizes the cost func-

tion of equation (11).

5. If ||p**! — p*|| < T, where T is a pre-defined
threshold, stop. Otherwise, set kK = k + 1 and go
to 2.

It can be shown [10] that the entire process requires
only a marginal increase of computation in relation
to that already required by the frame-based motion
estimates.

4.2 Updating the summarizing map

Once the optimal motion parameters are deter-
mined, the estimate of the map S can be updated
through the minimization of equation (12). It is
straightforward to show that setting to zero the deriva-
tive, with respect to S(x), of this equation leads to

S =3 L FE+I@T). (1)

This has the intuitive appeal that once the optimal
motion parameters are found, the optimal summariza-
tion map is simply the mean of all the images in the
sequence after they are warped to the map’s coordi-
nate frame. Equation (17) has, in fact, been used in
the majority of previous proposals for the the con-
struction of image layers [11] and mosaics [8].

Given the new summarizing map, a new set of mo-
tion parameters can be computed, leading to the iter-
ative minimization of equations (11) and (12). Notice
that, since each step in the iteration is guaranteed to
decrease the cost function or leave it unchanged and
the cost function is bounded below by zero, the pro-
cedure is guaranteed to converge to a (possibly local)
minimum.

5 Summarization results

In order to test the improvements obtained with
spatiotemporal modelling, we applied both the tem-
porally localized and the spatio-temporal model to the
summarization of various sequences. The model rely-
ing on pairwise affine estimates works well when there
is a single global motion (e.g. static scene and mov-
ing camera), but runs into problems whenever there
is ambiguity with repect to motion dominance. This
is illustrated by Figure 3 which depicts a scene con-
sisting of a static weakly textured background, and
a person with approximatly affine body motion, and
non-rigid arm motion.

The summarizing maps on the bottom left and right
of the figure were obtained, respectivelly, with the
temporally localized motion model and the spatiotem-
poral model with a second-order temporal constraint
(M = 2 in equation (3)). While the computational
cost of the two methods is comparable, the temporally
localized motion model leads to an erratic estimate
and significant uncertainty in the recovered map. On
the other hand, the spatiotemporal model locks onto
the body motion, leading to a map that summarizes
the scene content in a much more meaningful way.

Notice that when all the frames are aligned with
respect to the same object (in this case the body), it
is not only easier to recognize this object (the person),
but also to understand the scene dynamics. In the
case of the figure, the spatiotemporal map provides a
significantly better description for the motion of the
arm throughout the sequence (even though the arm
serves as a reference for some of the frames when the
temporally localized model is used).

A Constraints on the temporal coeffi-
cients

Assuming that the trajectories of points in the im-
age plane satisfy the constraint of equation (3), we
now determine how the coefficients of that equation
must, themselves, be constrained in order to guaran-
tee affine motion between consecutive frames (equa-
tions (1) and (2)). For this, we prove the following
theorem.

Theorem 1 Consider a motion trajectory satisfying
the constraint of equation (3). Then x; is an affine
transformation of xq if and only if each of the coeffi-
cients in the equation is itself an affine transformation
of xg. ILe. for a motion trajectory satisfying equa-
tion (3), x; is an affine transformation of x¢ if and
only if equations (4) and (5) are satisfied.

Proof:



Figure 3: Four frames from a sequence containing three motions and high dominance ambiguity (top) and summarizing maps
obtained with temporally localized (bottom-left) and with the spatiotemporal model (bottom-right). When localized estimates are
used, registration is sometimes performed with respect to the body and other times with respect to the moving arm.

i) Assume equations (4) and (5) hold. Then by
simple substitution in equation (3) we obtain equa-
tions (6) and (7). Comparing these equations with (1)
and (2), it is clear that the former define an affine
transformation between xo and x;.

ii) In order to prove the reverse direction, we start
by considering an homogeneous coordinate system [3],
where X; = (1,z;,y;)” and noting that, in such a co-
ordinate system, affine transformations are obtained
by matrix multiplication. Le. if X; is an affine trans-
formation of Xy, then

X; = Q;X,, (18)
where

Q = - - = ’ (19)

and — can be any real number. In the new coordinate
system, equation (3) becomes

M
X;=Xo+ Y it} (20)

=0

with &; = (0,¢7)T.

Assume that x; is an affine transformation of xq.
Then, combining equations (18) and (20)

M
Zézt; = (Q] _I)XOJJ = 17"'7N;
i=0

where N is the number of frames in the sequence.
Next, pick any M distinct j (for example the first M)
and construct the following system of equations

i
&7

XTQF-1 [=|1 ¢ ... !

P

(21)

Calling T the matrix which is a function of the ¢}, and

noticing that it is a Vandermonde matrix, it is clear

that (because all the j are different) it has full rank [4].
The system can thus be inverted, leading to

2

& = (T . V,i=1,...,M,
K

where (T~')_ is the i" row of T~'!, and V the matrix

on the left-hand side of equation (21). Hence, each ®;

is a linear combination of all the (Q; — I)Xq vectors,



ie.
1
et (1]
=Y p(Q—T)|Xo,i=1,...,M.
7=0
Because the Q; matrices are of the form given in equa- 2]
tion (19), the matrices (Q; — I) have zeros in all the
positions of their first rows and the equation becomes [3]
0 0 0 0
[ ]: © | Xei=1,...M 8
b o
[5]
i.e. ¢ satisfies equations (4) and (5) for all . O
It follows from the properties of affine transforma- 6
tions that if, for all j, x; is an affine transformation [6]
of xg, then it is also an affine transformation of x;_1,
i.e. the motion between consecutive frames is affine. 7]
B Parameter estimation
The optimal set of spatiotemporal motion parame-
ters is, for a given map, the one which minimizes equa-
tion (11). As pointed out in section 4.1, this minimiza- [8]
tion is carried out through the Gauss-Newton method.
For a least squares cost function
JP) =Y Jip)* [9]
i
this method consists of the iteration described by [10]
equation (13) with
[11]

dt = ZVPJi(p)TVin(p) Zji(p) Ve Ji(p)-

For the cost function of equation (10)
Ji(p) = F;(2(x)T;p) — S(x)

and
Vpdi(p) = T ®(x)" Vi Fj (¥ (%)),

where ¥;(x) is defined by equation (9), leading to

d* =
-1
DT ()" Vo (1) V(1) T R ()T; |
S (F () - 50) T80TV (Ti(x)- (22)

Since the 7; do not depend on x, they can be taken
out of the summation with respect to the spatial co-
ordinates, leading to equations (14) to (16).
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