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Abstract

We address the question of feature selection in the context of visual
recognition. It is shown that, besides efficient from a computational
standpoint, the infomax principle is nearly optimal in the minimum
Bayes error sense. The concept of marginal diversity is introduced, lead-
ing to a generic principle for feature selection (the principle of maximum
marginal diversity) of extreme computational simplicity. The relation-
ships between infomax and the maximization of marginal diversity are
identified, uncovering the existence of a family of classification proce-
dures for which near optimal (in the Bayes error sense) feature selection
does not require combinatorial search. Examination of this family in light
of recent studies on the statistics of natural images suggests that visual
recognition problems are a subset of it.

1 Introduction

It has long been recognized that feature extraction and feature selection are important prob-
lems in statistical learning. Given a classification or regression task in some observation
space Z (typically high-dimensional), the goal is to find the best transform 7" into a feature
space X (typically lower dimensional) where learning is easier (e.g. can be performed with
less training data). While in the case of feature extraction there are few constraints on T,
for feature selection the transformation is constrained to be a projection, i.e. the compo-
nents of a feature vector in X" are a subset of the components of the associated vector in Z.
Both feature extraction and selection can be formulated as optimization problems where
the goal is to find the transform that best satisfies a given criteria for *“feature goodness”.

In this paper we concentrate on visual recognition, a subset of the classification problem for
which various optimality criteria have been proposed throughout the years. In this context,
the best feature spaces are those that maximize discrimination, i.e. the separation between
the different image classes to recognize. However, classical discriminant criteria such as
linear discriminant analysis make very specific assumptions regarding class densities, e.g.
Gaussianity, that are unrealistic for most problems involving real data. Recently, various
authors have advocated the use of information theoretic measures for feature extraction or
selection [15, 3, 9, 11, 1]. These can be seenlas instantiations of the the infomax principle



of neural organization® proposed by Linsker [7], which also encompasses information the-
oretic approaches for independent component analysis and blind-source separation [2]. In
the classification context, infomax recommends the selection of the feature transform that
maximizes the mutual information (MI) between features and class labels.

While searching for the features that preserve the maximum amount of information about
the class is, at an intuitive level, an appealing discriminant criteria, the infomax principle
does not establish a direct connection to the ultimate measure of classification performance
- the probability of error (PE). By noting that to maximize MI between features and class
labels is the same as minimizing the entropy of labels given features, it is possible to estab-
lish a connection through Fano’s inequality: that class-posterior entropy (CPE) is a lower
bound on the PE [11, 4]. This connection is, however, weak in the sense that there is little
insight on how tight the bound is, or if minimizing it has any relationship to minimizing
PE. In fact, among all lower bounds on PE, it is not clear that CPE is the most relevant.
An obvious alternative is the Bayes error (BE) which 1) is the tightest possible classifier-
independent lower-bound, 2) is an intrinsic measure of the complexity of the discrimination
problem and, 3) like CPE, depends on the feature transformation and class labels alone.
Minimizing BE has been recently proposed for feature extraction in speech problems [10].

The main contribution of this paper is to show that the two strategies (infomax and mini-
mum BE) are very closely related. In particular, it is shown that 1) CPE is a lower bound
on BE and 2) this bound is tight, in the sense that the former is a good approximation to the
latter. It follows that infomax solutions are near-optimal in the minimum BE sense. While
for feature extraction both infomax and BE appear to be difficult to optimize directly, we
show that infomax has clear computational advantages for feature selection, particularly in
the context of the sequential procedures that are prevalent in the feature selection litera-
ture [6]. The analysis of some simple classification problems reveals that a quantity which
plays an important role in infomax solutions is the marginal diversity: the average distance
between each of the marginal class-conditional densities and their mean. This serves as
inspiration to a generic principle for feature selection, the principle of maximum marginal
diversity (MMD), that only requires marginal density estimates and can therefore be imple-
mented with extreme computational simplicity. While heuristics that are close to the MMD
principle have been proposed in the past, very little is known regarding their optimality.

In this paper we summarize the main results of a theoretical characterization of the prob-
lems for which the principle is guaranteed to be optimal in the infomax sense (see [13] for
further details). This characterization is interesting in two ways. First, it shows that there is
a family of classification problems for which a near-optimal solution, in the BE sense, can
be achieved with a computational procedure that does not involve combinatorial search.
This is a major improvement, from a computational standpoint, to previous solutions for
which some guarantee of optimality (branch and bound search) or near optimality (forward
or backward search) is available [6]. Second, when combined with recent studies on the
statistics of biologically plausible image transformations [8, 5], it suggests that in the con-
text of visual recognition, MMD feature selection will lead to solutions that are optimal in
the infomax sense. Given the computational simplicity of the MMD principle, this is quite
significant. We present experimental evidence in support of these two properties of MMD.

2 Infomax vs minimum Bayeserror

In this section we show that, for classification problems, the infomax principle is closely
related to the minimization of Bayes error. We start by defining these quantities.

tUnder the infomax principle, the optimal organization for a complex multi-layered perceptual
system is one where the information that reaches each layer is processed so that the maximum amount
of information is preserved for subsequent layers.



Theorem 1 Given a classification problem with M classes in a feature space X', the deci-
sion function which minimizes the probability of classification error is the Bayes classifier
g*(x) = argmax; Py x(i|x), where Y is a random variable that assigns x to one of M
classes,and i € {1, ..., M}. Furthermore, the PE is lower bounded by the Bayes error

L* =1 — Ex[max Py x (i|x)], (1)
K2
where Eyx means expectation with respect to Px (x).

Proof: All proofs are omitted due to space considerations. They can be obtained by con-
tacting the author.

Principle 1 (infomax) Consider an M-class classification problem with observations
drawn from random variable Z € Z, and the set of feature transformations T’ : Z —
X. The best feature space is the one that maximizes the mutual information I(Y; X)
where Y is the class indicator variable defined above, X = T(Z), and I(Y;X) =

> [ px.y(x,i)log %mdx the mutual information between X and Y.
It is straightforward to show that I(X,Y) = H(Y) — H(Y|X), where H(X) =
— [ px(x) log px (x)dx is the entropy of X. Since the class entropy H(Y") does not de-
pend on T', infomax is equivalent to the minimization of the CPE H (Y'|X). We next derive
a bound that plays a central role on the relationship between this quantity and BE.

Lemma 1 Consider a probability mass function p = {p1,...,pm} suchthat 0 < p; <
1,Viand )", p; = 1. Then,

1 log(2M — 1)
1- )>——H(p) - >=—_
(1 —maxp;) > Tog 11 (P) log I
where H(p) = — ), pilog p;. Furthermore, the bound is tight in the sense that equality
holds when
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The following theorem follows from this bound.

Theorem 2 The BE of an M -class classification problem with feature space X and class
indicator variable Y, is lower bounded by

2M —1
logeM 1)

" 1
L3 (M) > g HOIX) = 502 4, @

log M
where X € X is the random vector from which features are drawn. When M is large

(M — co) this bound reduces to L% (M) > 5 H(V]X).

It is interesting to note the relationship between (4) and Fano’s lower bound on the PE

(P, > ﬁfﬂﬂx) - ﬁ)- The two bounds are equal up to an additive constant

(o3 77 108 3a7—7) that quickly decreases to zero with the number of classes M. It follows
that, at least when the number of classes is large, Fano’s is really a lower bound on BE, not
only on PE. Besides making this clear, Theorem 2 is a relevant contribution in two ways.
First, since constants do not change the location of the bound’s extrema, it shows that info-
max minimizes a lower bound on BE. Second, unlike Fano’s bound, it sheds considerable
insight on the relationship between the extrema of the bound and those of the BE.

In fact, it is clear from the derivation of the theorem that, the only reason why the right-
hand (RHS) and left-hand (LHS) sides of (4) differ is the application of (2). Figure 1
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Figure 1: Visualization of (2). Left: LHS and RHS versus p; for M = 2, (p2 = 1 — p1). Middle:
contours of the LHS versus (p1,p2) for M = 3, (ps = 1 — p1 — p2). Right: same, for RHS.

Figure 2: The LHS of (4) as an approximation to (1) for a two-class Gaussian problem where
Px|y(x|1) ~ N(0,I) and Pxy(x|2) ~ N(u,I). All plots are functions of . Left: surface plot
of (1). Middle: surface plot of the LHS of (4). Right: contour plots of the two functions.

shows plots of the RHS and LHS of this equation when M € {2, 3}, illustrating three
interesting properties. First, bound (2) is tight in the sense defined in the lemma. Second,
the maximum of the LHS is co-located with that of the RHS. Finally, (like the RHS) the
LHS is a concave function of p and increasing (decreasing) when the RHS is. Due to these
properties, the LHS is a good approximation to the RHS and, consequently, the LHS of (4)
a good approximation to its RHS. It follows that infomax solutions will, in general, be very
similar to those that minimize the BE . This is illustrated by a simple example in Figure 2.

3 Feature sdlection

For feature extraction, both infomax and minimum BE are complicated problems that can
only be solved up to approximations [9, 11, 10]. It is therefore not clear which of the
two strategies will be more useful in practice. We now show that the opposite holds for
feature selection, where the minimization of CPE is significantly simpler than that of BE.
We start by recalling that, because the possible number of feature subsets in a feature
selection problem is combinatorial, feature selection techniques rely on sequential search
methods [6]. These methods proceed in a sequence of steps, each adding a set of features
to the current best subset, with the goal of optimizing a given cost function?. We denote the
current subset by X, the added features by X, and the new subset by X,, = (X,, X,).

Theorem 3 Consider an M -class classification problem with observations drawn from a
random variable Z € Z, and a feature transformation T : Z — X. X is a infomax feature

2These methods are called forward search techniques. There is also an alternative set of backward
search techniques, where features are successively removed from an initial set containing all features.
We ignore the latter for simplicity, even though all that is said can be applied to them as well.



space if and only if VT # T
(KL [Px)y (x[d)||Px(x)] )y > (KL [Pxy (x]d)]| Px: (x)]) (5)

where X = T'(Z), X' =T'(Z), (f(i))y = >_; Py (i) f(i) denotes expectation with respect

to the prior class probabilities and K L[p||q] = [ p(x)log ”g)’g dx is the Kullback-Leibler
divergence between p and ¢q. Furthermore, if X,, = (X,,X,), the infomax cost function

decouples into two terms according to
(KL [Px, )y ali)l|Px, (xn)] )y, = (KL [Px,x.,y(Xalxc,1)||Px,x.(%al%c)])y
(KL [ch|y(xc|i)||ch (xc)] }Y . (6)

Equation (5) exposes the discriminant nature of the infomax criteria. Noting that
Px(x) =< Pxy(x[i) >v, it clearly favors feature spaces where each class-conditional
density is as distant as possible (in the KL sense) from the average among all classes.
This is a sensible way to quantify the intuition that optimal discriminant transforms are the
ones that best separate the different classes. Equation (6), in turn, leads to an optimal rule
for finding the features X, to merge with the current optimal solution X.: the set which
minimizes (KL [Px,|x.,v (Xa|%e, 9)|| Px.|x. (Xa|%c)] )y The equation also leads to a
straightforward proceolure for updatlng the optimal cost once this set is determined. On the
other hand, when the cost function is BE, the equivalent expression is

' Px.v,x.(Xali; Xc)
Ex,[max Pyx, (i|x,)] = Ex, { E max —p — =
X, [ ; v X, (1%n)] X { Xa x| i Px,x.(Xalxc)

mecmxcn}. ™

Note that the non-linearity introduced by the max operator, makes it impossible to ex-
press Ex, [max; Py x, (i|x,)] as a function of Ex_[max; Py x_(i|x.)]. For this reason,
infomax is a better principle for feature selection problems than direct minimization of BE.

4 Maximum marginal diversity

To gain some intuition for infomax solutions, we next consider the Gaussian problem of
Figure 3. Assuming that the two classes have equal prior probabilities (Py (1) = Py (2) =
1/2), the marginals Px, y (z|1) and Px,|y(x|2) are equal and feature X, does not con-
tain any useful information for classification. On the other hand, because the classes are
clearly separated along the x5 axis, feature X, contains all the information available for
discriminating between them. The different discriminating powers of the two variables
are reflected by the infomax costs: while Px, (z) = Px,y(z[1) = Px, y(z|2) leads
to < KL[PXlly(.Z’ll)HPXl (.Z')] >Sy= 0, from PX2(.Z') # PX2|Y('Z.|1) 7é PX2‘Y('Z.|2) it
follows that < K L[Px,y(z|i)||Px,(z)] >y> 0, and (5) recommends the selection of
X,. This is unlike energy-based criteria, such as principal component analysis, that would
select X;. The key advantage of infomax is that it emphasizes marginal diversity.

Definition 1 Consider a classification problem on a feature space X, and a random vec-
tor X = (X1,...,X,) from which feature vectors are drawn. Then, md(X;) =<
K L[Px, y(z]i)||Px, (x)] >y is the marginal diversity of feature X.

The intuition conveyed by the example above can be easily transformed into a generic
principle for feature selection.

Principle 2 (Maximum marginal diversity) The best solution for a feature selection
problem is to select the subset of features that leads to a set of maximally diverse marginal
densities.



Figure 3: Gaussian problem with two classes Y € {1, 2}, in the two-dimensions, X = (X1, X2).
Left: contours of 65% probability. Middle: marginals for X;. Right: marginals for X5.

This principle has two attractive properties. First it is inherently discriminant, recommend-
ing the elimination of the dimensions along which the projections of the class densities are
most similar. Second, it is straightforward to implement with the following algorithm.

Algorithm 1 (MMD feature selection) For a classification problem with n features X =
(X1,...,Xn), M classes Y € {1,...,M} and class priors Py (i) = p; the following
procedure returns the top N MMD features.

- foreach feature k € {1,...,n}:
* foreach class i € {1,..., M}, compute an histogram estimate hy, ; of Px, |y (z|i),
* compute hy, = 2= 3" iy,
* compute the marginal diversity md(X;) = >, pihf’i log(hy,;./ht), where both the
log and division ./ are performed element-wise,
- order the features by decreasing diversity, i.e. find {k1, ..., k,} such that
md(Xy,;) > md(Xy,,,), and return {X,,..., Xy }.

In general, there are no guarantees that MMD will lead to the infomax solution. In [13]
we seek a precise characterization of the problems where MMD is indeed equivalent to
infomax. Due to space limitations we present here only the main result of this analysis,
see [13] for a detailed derivation.

Theorem 4 Consider a classification problem with class labels drawn from a random

variable Y and features drawn from a random vector X = (Xi,...,X,) and let
X* = (X7,...,X}) be the optimal feature subset of size N in the infomax sense. If
I(Xy; I,kfl):I(X;:; I,k71|Y)JVk€ {1,...,N} (8)
where X7, = {X7,..., X;_,}, the set X* is also the optimal subset of size N in the
MMD sense. Furthermore,
N
(KL [Pxspy (x]d)|| Px+ (x)] ), = > md(X}). (9)
k=1

The theorem states that the MMD and infomax solutions will be identical when the mutual
information between features is not affected by knowledge of the class label. This is an
interesting condition in light of various recent studies that have reported the observationof
consistent patterns of dependence between the features of various biologically plausible
image transformations [8, 5]. Even though the details of feature dependence will vary from
one image class to the next, these studies suggest that the coarse structure of the patterns of
dependence between such features follow universal statistical laws that hold for all types of
images. The potential implications of this conjecture are quite significant. First it implies
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Figure 4: a) JZ score as a function of sample size for the two-class Gaussian problem discussed
in the text, b) classification accuracy on Brodatz as a function of feature space dimension, and c)
corresponding curves of cumulative marginal density (9). A linear trend was subtracted to all curves
in ¢) to make the differences more visible.

that, in the context of visual processing, (8) will be approximately true and the MMD
principle will consequently lead to solutions that are very close to optimal, in the minimum
BE sense. Given the simplicity of MMD feature selection, this is quite remarkable. Second,
it implies that when combined with such transformations, the marginal diversity is a close
predictor for the CPE (and consequently the BE) achievable in a given feature space. This
enables quantifying the goodness of the transformation without even having to build the
classifier. See [13] for a more extensive discussion of these issues.

5 Experimental results

In this section we present results showing that 1) MMD feature selection outperforms com-
binatorial search when (8) holds, and 2) in the context of visual recognition problems,
marginal diversity is a good predictor of PE. We start by reporting results on a synthetic
problem, introduced by Trunk to illustrate the curse of dimensionality [12], and used by
Jain and Zongker (JZ) to evaluate various feature selection procedures [6]. It consists of
two Gaussian classes of identity covariance and means +[1 — —=... Z=]" and is an in-
teresting benchmark for feature selection because it has a clear optimal solution for the
best subset of d features (the first d) for any d. JZ exploited this property to propose
an automated procedure for testing the performance of feature selection algorithms across
variations in dimensionality of the feature space and sample size. We repeated their ex-
periments, simply replacing the cost function they used (Mahalanobis distance - MDist -
between the means) by the marginal diversity.

Figure 4 a) presents the JZ score obtained with MMD as a function of the sample size. A
comparison with Figure 5 of [6] shows that these results are superior to all those obtained
by JZ, including the ones relying on branch and bound. This is remarkable, since branch
and bound is guaranteed to find the optimal solution and the Mdist is inversely proportional
to the PE for Gaussian classes. We believe that the superiority of MMD is due to the
fact that it only requires estimates of the marginals, while the MDist requires estimates
of joint densities and is therefore much more susceptible to the curse of dimensionality.
Unfortunately, because in [6] all results are averaged over dimension, we have not been
able to prove this conjecture yet. In any case, this problem is a good example of situations
where, because (8) holds, MMD will find the optimal solution at a computational cost that
is various orders of magnitude smaller than standard procedures based on combinatorial
search (e.g. branch and bound).

Figures 4 b) and c¢) show that, for problems involving commonly used image transforma-
tions, marginal diversity is indeed a good predictor of classification accuracy. The figures



compare, for each space dimension, the recognition accuracy of a complete texture recog-
nition system with the predictions provided by marginal diversity. Recognition accuracy
was measured on the Brodatz texture database (112 texture classes) and a 64 dimensional
feature space consisting of the coefficients of a multiresolution decomposition over regions
of 8 x 8 pixels. Three transformations were considered: the discrete cosine transform, prin-
cipal component analysis, and a three-level wavelet decomposition (see [14] for detailed
description of the experimental set up). The classifier was based on Gauss mixtures and
marginal diversity was computed with Algorithm 1. Note that the curves of cumulative
marginal diversity are qualitatively very similar to those of recognition accuracy.
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