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Abstract

The classical hypothesis, that bottom-up saliency is aeceutrround process, is
combined with a more recent hypothesis that all saliencysdets are optimal in

a decision-theoretic sense. The combined hypothesis stegms discriminant
center-surround saliency, and the corresponding optialergy architecture is
derived. This architecture equates the saliency of eacherfacation to the dis-

criminant power of a set of features with respect to the diaation problem that

opposes stimuli at center and surround, at that locatiaa stiown that the result-
ing saliency detector makes accurate quantitative pieditfor various aspects
of the psychophysics of human saliency, including nondingroperties beyond
the reach of previous saliency models. Furthermore, itdgsvsithat discriminant

center-surround saliency can be easily generalized towsstimulus modalities
(such as color, orientation and motion), and provides agtsolutions for many

other saliency problems of interest for computer visiontial solutions, under
this hypothesis, are derived for a number of the former (idiclg static natural

images, dense motion fields, and even dynamic textures)appiéed to a num-

ber of the latter (the prediction of human eye fixations, mfhased saliency in
the presence of ego-motion, and motion-based saliencyeiprigsence of highly
dynamic backgrounds). In result, discriminant saliencghiswn to predict eye
fixations better than previous models, and produces baakgrsubtraction algo-
rithms that outperform the state-of-the-art in computsion.

1 Introduction

The psychophysics of visual saliency and attention have leetensively studied during the last
decades. As a result of these studies, it is now well knowhgakiency mechanisms exist for a
number of classes of visual stimuli, including color, otegion, depth, and motion, among others.
More recently, there has been an increasing effort to inizeccomputational models for saliency.
One approach that has become quite popular, both in thegitaloand computer vision communi-
ties, is to equate saliency with center-surround diffeireclt was initially proposed in [12], and
has since been applied to saliency detection in both staiggéry and motion analysis, as well
as to computer vision problems such as robotics, or videopeession. While difference-based
modeling is successful at replicating many observatioamfpsychophysics, it has three signifi-
cant limitations. First, it does not explain those obseovestin terms of fundamental computational
principles for neural organization. For example, it impltbat visual perception relies on a linear
measure of similarity (difference between feature respsiscenter and surround). This is at odds
with well known properties of higher level human judgmentssimilarity, which tend not to be
symmetric or even compliant with Euclidean geometry [2@c@d, the psychophysics of saliency
offers strong evidence for the existence of both non-liiesrand asymmetries which are not eas-
ily reconciled with this model. Third, although the censairround hypothesis intrinsically poses



saliency as a classification problem (of distinguishingteefrom surround), there is little basis on
which to justify difference-based measures as optimal iassification sense. From an evolutionary
perspective, this raises questions about the biologiealgibility of the difference-based paradigm.

An alternative hypothesis is that all saliency decisioresaatimal in a decision-theoretic sense.
This hypothesis has been denoted as discriminant salier[6f,iwhere it was somewhat narrowly
proposed as the justification for a top-down saliency atgori While this algorithm is of interest
only for object recognition, the hypothesis of decisionaifedic optimality is much more general,
and applicable to any form of center-surround saliency.s Hais motivated us to test its ability to
explain the psychophysics of human saliency, which is betteumented for the bottom-up neural
pathway. We start from the combined hypothesis that 1) boetip saliency is based on center-
surround processing, and 2) this processing is optimal iacistbn theoretic sense. In particular,
it is hypothesized that, in the absence of high-level gahks,most salient locations of the visual
field are those that enable the discrimination between camig surround with smallest expected
probability of error. This is referred to as thdescriminant center-surround hypothesis and, by
definition, produces saliency measures that are optimaldlassification sense. It is also clearly
tied to a larger principle for neural organization: thatmgrceptual mechanisms are optimal in a
decision-theoretic sense.

In this work, we present the results of an experimental extadu of the plausibility of the discrim-
inant center-surround hypothesis. Our study evaluatesliiity of saliency algorithms, that are
optimal under this hypothesis, to both

e reproduce subject behavior in classical psychophysicsréxents, and

e solve saliency problems of practical significance, withpess to a humber of classes of
visual stimuli.

We derive decision-theoretic optimal center-surroundilyms for a number of saliency problems,
ranging from static spatial saliency, to motion-basecesaly in the presence of egomotion or even
complex dynamic backgrounds. Regarding the ability toicap psychophysics, the results of this
study show that discriminant saliency not only replicatéarecdotal observations that can be ex-
plained by linear models, such as that of [12], but can alskensurprisingly accurate) quantitative
predictions for non-linear aspects of human saliency, wisie beyond the reach of the existing
approaches. With respect to practical saliency algorithihey show that discriminant saliency not
only is more accurate than difference-based methods inqtiregl human eye fixations, but actu-
ally produces background subtraction algorithms that efipm the state-of-the-art in computer
vision. In particular, it is shown that, by simply modifyirige probabilistic models employed in
the (decision-theoretic optimal) saliency measure - frogll tnown models of natural image statis-
tics, to the statistics of simple optical-flow motion feasirto more sophisticated dynamic texture
models - it is possible to produce saliency detectors fdregistatic or dynamic stimuli, which are
insensitive to background image variability due to textegomotion, or scene dynamics.

2 Discriminant center-surround saliency

A common hypothesis for bottom-up saliency is that the salieof each location is determined by
how distinct the stimulus at the location is from the stimmlits surround (e.g., [11]). This hypoth-
esis is inspired by the ubiquity of “center-surround” matkes in the early stages of biological
vision [10]. It can be combined with the hypothesis of demisiheoretic optimality, by defining a
classification problem that equates

e the class of interest, at locatidnwith the observed responses of a pre-defined set of fea-
turesX within a neighborhoodV} of I (the center),

e the null hypothesis with the responses within a surroundiimgiow 1V} (the surround ),

The saliency of locatiori* is then equated with the power of the feature Xeto discriminate
betweencenter andsurround. Mathematically, the feature responses within the two winsl are
interpreted as observations drawn from a random prakégs= (X, (1), ..., X4(1)), of dimension

d, conditioned on the state of a hidden random variab{®. The observed feature vector at any
locationj is denoted b (j) = (z1(j), - ., z4(j)), and feature vectors(j) such thatj € Wy, c €



{0,1} are drawn from class (i.e., Y'(I) = ¢), according to conditional densiti&x |y ) (x|c).
The saliency of locatioi, S(1), is quantified by the mutual information between featud&sand
class labelY’,

Px),y (% c)
S() =T ){7 Y) = /p X,C log ——=——————~dx. .
(1) o ) Z x(1),y (1) (X €) ng(l)(X)pY(l)(C) @)

The! subscript emphasizes the fact that the mutual informasatefined locally, withinV;. The
function S(!) is referred to as thsaliency map.

3 Discriminant saliency detection in static imagery

Since human saliency has been most thoroughly studied iddah®in of static stimuli, we first
derive the optimal solution for discriminant saliency imstdomain. We then study the ability of
the discriminant center-surround saliency hypothesiscpiaén the fundamental properties of the
psychophysics of pre-attentive vision.

3.1 Feature decomposition

The building blocks of the static discriminant saliencyeddr are shown in Figure 1. The first
stage, feature decomposition, follows the proposal of,[Mhjch closely mimics the earliest stages
of biological visual processing. The image to process isgbject to a feature decomposition into
an intensity map and four broadly-tuned color channkls,(r +g+0b)/3, R= |7 — (§+b)/2] 1,

G = 13- (F+b)/2]+, B = [b—(r+3)/2)+ andY = [(7 +§)/2 — |F — §|/2)+, where
r=r/I,g=g/I,b=">b/I,and|x]; = max(z,0). The four color channels are, in turn, combined
into two color opponent channel® — G for red/green and3 — Y for blue/yellow opponency.
These and the intensity map are convolved with three MexXieamavelet filters, centered at spatial
frequencie®.02, 0.04 and0.08 cycle/pixel, to generate nine feature channels. The feapacet
consists of these channels, plus a Gabor decompositioredhtansity map, implemented with a
dictionary of zero-mean Gabor filters at 3 spatial scalestéred at frequencies 6f08, 0.16, and
0.32 cycle/pixel) and4 directions (evenly spread frofto 7).

3.2 Leveraging natural image statistics

In general, the computation of (1) is impractical, sinceeduires density estimates on a potentially
high-dimensional feature space. This complexity can, lvewdoe drastically reduced by exploiting
a well known statistical property of band-pass natural iefsgtures, e.g. Gabor or wavelet coeffi-
cients: that features of this type exhibit strongbnsistent patterns of dependence (bow-tie shaped
conditional distributions) across a very wide range of sdgsof natural imagery [2, 9, 21]. The
consistency of these feature dependencies suggestsélatrthy in general, not greatly informative
about the image class [21, 2] and, in the particular case la&nsg, about whether the observed
feature vectors originate in the center or surround. Hefigezan usually be well approximated by
the sum of marginal mutual informations [21i.e.,

d
S = D L(XiY). 2

Since (2) only requires estimates of marginal densitidgstsignificantly less complexity than (1).
This complexity can, indeed, be further reduced by respttirthe well known fact that the marginal
densities are accurately modeled by a generalized Gaudistaibution (GGD) [13]. In this case, all
computations have a simple closed form [4] and can be mapped ineural network that replicates
the standard architecture of V1: a cascade of linear filgerdivisive normalization, quadratic non-
linearity and spatial pooling [7].

!Note that this approximatiodoes not assume that the features are independently distributed, but simply
that their dependencies are not informative about the class.
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Figure 2: The nonlinearity of human saliency re-

sponses to orientation contrast [14] (a) is replicated
by discriminant saliency (b), but not by the model

Figure 1:Bottom-up discriminant saliency detector. of [11] (c).

3.3 Consistency with psychophysics

To evaluate the consistency of discriminant saliency wéchophysics, we start by applying the
discriminant saliency detector to a series of displays usethssical studies of visual attention [18,
19, 14F. In [7], we have shown that discriminant saliency reprodutte anecdotal properties of
saliency - percept of pop-out for single feature searchedard of feature conjunctions, and search
asymmetries for feature presence vs. absence - that haeysky been shown possible to replicate
with linear saliency models [11]. Here, we focusauantitative predictions of human performance,
and compare the output of discriminant saliency with bottan data and that of the difference-
based center-surround saliency model $11]

The first experiment tests the ability of the saliency modelpredict a well known nonlinearity
of human saliency. Nothdurft [14] has characterized theesey of pop-out targets due to ori-
entation contrast, by comparing the conspicuousness eftation defined targets and luminance
defined ones, and using luminance as a reference for refatiget salience. He showed that the
saliency of a target increases with orientation contrasgtjrba non-linear manner: 1) there exists a
threshold below which the effect of pop-out vanishes, arab®)ye this threshold saliency increases
with contrast, saturating after some point. The resultfisféxperiment are illustrated in Figure 2,
which presents plots of saliency strength vs orientatiamtrest for human subjects [14] (in (a)),
for discriminant saliency (in (b)), and for the differenbased model of [11]. Note that discrim-
inant saliency closely predicts the strong threshold ataration effects characteristic of subject
performance, but the difference-based model shows no @apl@nce.

The second experiment tests the ability of the models to raakarate quantitative predictions of
search asymmetries. It replicates the experiment desigyddeisman [19] to show that the asym-
metries of human saliency comply with Weber’s law. Figura)3shows one example of the displays
used in the experiment, where the central target (vertiagl differs from distractors (a set of iden-
tical vertical bars) only in length. Figure 3 (b) shows a saraplot of the values of discriminant
saliency obtained across the set of displays. Each poimégponds to the saliency at the target
location in one display, and the dashed line shows thathlikean perception, discriminant saliency
follows Weber's law: target saliency is approximately Anén the ratio between the difference of
target/distractor lengthXx) and distractor lengthy). For comparison, Figure 3 (c) presents the cor-
responding scatter plot for the model of [11], which clealbes not replicate human performance.

4 Applications of discriminant saliency

We have, so far, presented quantitative evidence in supgpaone hypothesis that pre-attentive vi-
sion implements decision-theoretical center-surroufidrsgy. This evidence is strengthened by the

2For the computation of the discriminant saliency maps, we followed the aonpmactice of psychophysics
and physiology [18, 10], to set the size of the center window to a \almparable to that of the display items,
and the size of the surround windowtgimes of that of the center. Informal experimentation has shown that
the saliency results are not substantively affected by variations atbhemqghrameter values adopted.

®Results obtained with the MATLAB implementation available in [22].
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(b) and [11] (c)) on Weber's law experiment. rithms.

Saliency model| Discriminant | Itti et al. [11] | Bruce et al. [1]
ROC area 0.7694 0.7287 0.7547

Table 1: ROC areas for different saliency models with resgeall human fixations.

already mentioned one-to-one mapping between the diswimisaliency detector proposed above
and the standard model for the neurophysiology of V1 [7]. theointeresting property of discrim-
inant saliency is that its optimality is independent of ttimalus dimension under consideration, or
of specific feature sets. In fact, (1) can be applied to ang tfystimuli, and any type of features, as
long as it is possible to estimate the required probabiiggrithutions from the center and surround
neighborhoods. This encouraged us to derive discrimiraigrey detectors for various computer
vision applications, ranging from the prediction of humame éxations, to the detection of salient
moving objects, to background subtraction in the contextighly dynamic scenes. The outputs
of these discriminant saliency detectors are next compargdeither human performance, or the
state-of-the-art in computer vision for each application.

4.1 Prediction of eye fixations on natural images

We start by using the static discriminant saliency detectdhe previous section to predict human
eye fixations. For this, the saliency maps were comparedeteyh fixations of human subjects in
an image viewing task. The experimental protocol was thft]pfising fixation data collected from
20 subjects and 120 natural images. Under this protocasadibncy maps are first quantized into
a binary mask that classifies each image location as eitheatioft or non-fixation [17]. Using
the measured human fixations as ground truth, a receiveatgperharacteristic (ROC) curve is
then generated by varying the quantization threshold. eeegdrediction corresponds to an ROC
area (area under the ROC curve) of 1, while chance perforeaocurs at an area of 0.5. The
predictions of discriminant saliency are compared to tlafshe methods of [11] and [1].

Table 1 presents average ROC areas for all detectors, atmsntire image set. It is clear that
discriminant saliency achieves the best performance artiantiree detectors. For a more detailed
analysis, we also plot (in Figure 4) the ROC areas of the ttedectors as a function of the “inter-
subject” ROC area (a measure of the consistency of eye matsrmmong human subjects [8]), for
the first two fixations - which are more likely to be driven bytiom-up mechanisms than the later
ones [17]. Again, discriminant saliency exhibits the styest correlation with human performance,
this happens at all levels of inter-subject consistency, the difference is largest when the latter
is strong. In this region, the performance of discriminaaitesnicy (85) is close t090% of that of
humans ©5), while the other two detectors only achieve clos8i (.81).

4.2 Discriminant saliency on motion fields

Similarly to the static case, center-surround discriminsaliency can produce motion-based
saliency maps if combined with motion features. We have émanted a simple motion-based de-
tector by computing a dense motion vector map (optical flost)veen pairs of consecutive images,
and using the magnitude of the motion vector at each locasomotion feature. The probability
distributions of this feature, within center and surroungre estimated with histograms, and the
motion saliency maps computed with (2).



Figure 5:Optical flow-based saliency in the presence of egomotion.

Despite the simplicity of our motion representation, thecdiminant saliency detector exhibits in-
teresting performance. Figure 5 shows several frames @wopfrom a video sequence, and their
discriminant motion saliency maps (bottom row). The segaetepicts a leopard running in a grass-
land, which is tracked by a moving camera. This results inifigant variability of the background,
due to egomotion, making the detection of foreground mdieopard), a non-trivial task. As shown
in the saliency maps, discriminant saliency successfidisedards the egomotion component of the
optical flow, detecting the leopard as most salient.

4.3 Discriminant Saliency with dynamic background

While the results of Figure 5 are probably within the reachref/jpusly proposed saliency models,
they illustrate the flexibility of discriminant saliencyn this section we move to a domain where
traditional saliency algorithms almost invariably failhi$ consists of videos of scenes with com-
plex and dynamic backgrounds (e.g. water waves, or tre@$awn order to capture the motion
patterns characteristic of these backgrounds it is negesseely on reasonably sophisticated prob-
abilistic models, such as the dynamic texture model [5].hSuodels are very difficult to fit in the
conventional, e.g. difference-based, saliency framesvbtk naturally compatible with the discrim-
inant saliency hypothesis. We next combine discriminantaresurround saliency with the dynamic
texture model, to produce a background-subtraction alyorfor scenes with complex background
dynamics. While background subtraction is a classic probteocomputer vision, there has been
relatively little progress for these type of scenes (e.g.[$B] for a review).

A dynamic texture (DT) [5, 3] is an autoregressive, geneeatiodel for video. It models the spatial

component of the video and the underlying temporal dynaasdsvo stochastic processes. A video
is represented as a time-evolving state proegss R", and the appearance of a frapec R™ is

a linear function of the current state vector with some oleg@n noise. The system equations are

= Azeq + vy
Y = Cxy + wy (3)

whered € R™™" is the state transition matrix; € R™*" is the observation matrix. The state and
observation noise are given by ~,,, N (0,Q,) andw; ~,,; N(0, R), respectively. Finally, the
initial condition is distributed as; ~ N (u, S). Given a sequence of images, the parameters of the
dynamic texture can be learned for the center and surrogion®at each image location, enabling

a probabilistic description of the video, with which the mmaitinformation of (2) can be evaluated.

We applied the dynamic texture-based discriminant sali€bd DS) detector to three video se-
guences containing objects moving in water. The first (WBtdtle from [23]) depicts a bottle
floating in water which is hit by rain drops, as shown in Figii¢a). The second and third, Boat and
Surfer, are composed of boats/surfers moving in water, hodis in Figure 8(a) and 9(a). These
sequences are more challenging, since the micro-textureeofater surface is superimposed on a
lower frequency sweeping wave (Surfer) and interspersé ligh frequency components due to
turbulent wakes (created by the boat, surfer, and cresteobweeping wave). Figures 7(b), 8(b)
and 9(b), show the saliency maps produced by discrimindieineg for the three sequences. The
DTDS detector performs surprisingly well, in all cases,etedting the foreground objects while ig-
noring the movements of the background. In fact, the DTD8dlet is close to an ideal background-
subtraction algorithm for these scenes.
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Figure 6:Performance of background subtraction algorithms on: (a) WattteB(b) Boat, and (c) Surfer.

Figure 7:Results on Bottle: (a) original; b) discriminant saliency with DT; and c) GMbtel of [16, 24].

For comparison, we present the output of a state-of-théackground subtraction algorithm, a
Gaussian mixture model (GMM) [16, 24]. As can be seen in FgTi(c), 8(c) and 9(c), the resulting
foreground detection is very noisy, and cannot adapt to thkeljhdynamic nature of the water
surface. Note, in particular, that the waves produced by aod surfer, as well as the sweeping
wave crest, create serious difficulties for this algorithionlike the saliency maps of DTDS, the
resulting foreground maps would be difficult to analyze bysgquent vision (e.g. object tracking)
modules. To produce a quantitative comparison of the saliemaps, these were thresholded at a
large range of values. The results were compared with grouurtkl foreground masks, and an ROC
curve produced for each algorithm. The results are shownguar€ 6, where it is clear that while
DTDS tends to do well on these videos, the GMM based backgrowdel does fairly poorly.
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