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Abstract

The machine learning problem of classifier design is stuffmd the perspective
of probability elicitation, in statistics. This shows thtae standard approach of
proceeding from the specification of a loss, to the mininiiabf conditional
risk is overly restrictive. It is shown that a better altdivais to start from the
specification of a functional form for the minimum condit&risk, and derive
the loss function. This has various consequences of pahdtiterest, such as
showing that 1) the widely adopted practice of relying onvearioss functions is
unnecessary, and 2) many new losses can be derived forficiatisn problems.
These points are illustrated by the derivation of a new los&Ehvis not convex,
but does not compromise the computational tractabilitylagsifier design, and
is robust to the contamination of data with outliers. A nevedting algorithm,
SavageBoost, is derived for the minimization of this losspé&imental results
show that it is indeed less sensitive to outliers than cotweal methods, such as
Ada, Real, or LogitBoost, and converges in fewer iterations

1 Introduction

The binary classification of examplesis usually performed with recourse to the mappihg=
sign[f(x)], wheref is a function from a pre-defined clags andg the predicted class label. Most
state-of-the-art classifier design algorithms, includ®gVs, boosting, and logistic regression, de-
termine the optimal functiori* by a three step procedure: 1) define a loss funafi@ry (x)), where
yis the class label of, 2) select a function clasg, and 3) search withigf for the functionf* which
minimizes the expected value of the loss, known as minimunditional risk. Although tremen-
dously successful, these methods have been known to stdferdome limitations, such as slow
convergence, or too much sensitivity to the presence ofessitin the data [1, 2]. Such limitations
can be attributed to the loss function§) on which the algorithms are based. These are convex
bounds on the so-calle@1 loss which produces classifiers of minimum probability of etmut is
too difficult to handle from a computational point of view.

In this work, we analyze the problem of classifier design fiepdifferent perspective, that has long
been used to study the problem of probability elicitatiorthie statistics literature. We show that the
two problems are identical, and probability elicitatiomdse seen as a reverse procedure for solving
the classification problem: 1) define the functional form wpected elicitation loss, 2) select a
function classF, and 3) derive a loss functiof. Both probability elicitation and classifier design
reduce to the problem of minimizing a Bregman divergence.déféve equivalence results, which
allow the representation of the classifier design procedinrgprobability elicitation form”, and the
representation of the probability elicitation procedurgnachine learning form”. This equivalence
is useful in two ways. From the elicitation point of view, ttigk functions used in machine learning
can be used as new elicitation losses. From the machingrngguaint of view, new insights on the
relationship between logs optimal functionf*, and minimum risk are obtained. In particular, it is
shown that the classical progression from loss to risk islpvestrictive: once a losg is specified,



both the optimalf*, and the functional form of the minimum risk are immediatpiged down.
This is, however, not the case for the reverse progressiaa:shown that any functional form of
the minimum conditional risk, which satisfies some mild ¢aaiats, supports manfg, /*) pairs.
Hence, once the risk is selected, one degree of freedommemiy selecting a class g¢f, it is
possible to tailor the losg, so as to guarantee classifiers with desirable traits. litiaddo this,
the elicitation view reveals that the machine learning easghon convex lossesis misguided. In
particular, it is shown that what matters is the convexityh&f minimum conditional risk. Once a
functional form is selected for this quantity, the convexif the lossp does not affect the convexity
of the Bregman divergence to be optimized.

These results suggest that many new loss functions can bediéor classifier design. We illustrate
this, by deriving a new loss that trades convexity for boulm#ss. Unlike all previous, the one
now proposed remains constant for strongly negative valfigs argument. This is akin to robust
loss functions proposed in the statistics literature tacedthe impact of outliers. We derive a new
boosting algorithm, denoted SavageBoost, by combinatidgheonew loss and the procedure used
by Friedman to derive RealBoost [3]. Experimental resuitsasthat the new boosting algorithm is
indeed more outlier resistant than classical methods, asié&daBoost, RealBoost, and LogitBoost.

2 Classification and risk minimization

A classifier is a mapping : X — {—1,1} that assigns a class labgle {—1,1} to a feature
vectorx € X, whereX is some feature space. If feature vectors are drawn withghibty density
Px (x), Py (y) is the probability distribution of the labelse {—1,1}, andL(x, y) a loss function,
the classification risk ig2(f) = Ex,y [L(g(x),y)]. Under theD-1 loss Ly,1(x,y) = 1if g(x) #y
and0 otherwise, this risk is the expected probability of clasaifion error, and is well known to be
minimized by the Bayes decision rule. Denotingrfix) = Py x (1]x) this can be written as

9" (x) = sign[2n(x) — 1]. 1)

Classifiers are usually implemented with mappings of thefgix) = sign[f(x)], wheref is some
mapping fromX’ to R. The minimization of thé-1 lossrequires that

sign[f*(x)] = sign2n(x) — 1], Vx @

When the classes are separable, Afw) such thatyf(x) > 0, Vx has zero classification error. The
0-1 losscan be written as a function of this quantity

LO/l(Xa y) = ¢0/1[yf(x)] = sign[—yf(x)].

This motivates the minimization of the expected value of tbss as a goal for machine learning.
However, this minimization is usually difficult. Many algtthms have been proposed to minimize
alternative risks, based on convex upper-bounds odthdoss These risks are of the form

Ry(f) = Ex,y[o(yf(x))] ®3)

whereg(-) is a convex upper bound af, /; (-). Some examples af(-) functions in the literature are
given in Table 1. Since these functions are non-negatierifiik is minimized by minimizing the
conditional riskEy x [¢(y f(x))|X = x] for everyx € X. This conditional risk can be written as

Cs(n, ) =no(f) + (1 —n)e(=f), 4)
where we have omitted the dependence ahd f onx for notational convenience.

Various authors have shown that, for tie) of Table 1, the functiorf; which minimizes (4)
£3(n) = argmin Gy (1, f) ©)

satisfies (2) [3, 4, 5]. These functions are also present&dtite 1. It can, in fact, be shown that (2)
holds for anyf;;(~) which minimizes (4) whenevef(-) is convex, differentiable at the origin, and

has derivative)’ (0) = 0 [5].
While learning algorithms based on the minimization of (4i¢cls as SVMs, boosting, or logistic

regression, can perform quite well, they are known to belpwansitive to outliers [1, 2]. These
are points for whichy f(x) < 0. As can be seen from Figure 1, the sensitivity stems fromatgel



Table 1: Machine learning algorithms progress from lassto inverse link functionf;(n), and minimum
conditional riskC (7).

Algorithm o(v) fs(n) ()
Least squares (1—-v)? 2n —1 an(1—n)
Modified LS max(1 — v, 0)? 2n—1 An(l —n)
SVM max (1l —v,0) | sign(2n—1) 1—12n—1]
Boosting exp(—v) 3 log ﬂ—n 2/n(1 —n)
Logistic Regression] log(l+ e~ ") log ﬁ -nlogn — (1 —n)log(l —n)

(infinite) weight given to these points by tki¢-) functions whery f (x) — —oo. In this work, we
show that this problem can be eliminated by allowing nonvesr)(-). This may, at first thought,
seem like a bad idea, given the widely held belief that thessg of the aforementioned algorithms
is precisely due to the convexity of these functions. We sek, however, that the convexity of-)

is not important. What really matters is the fact, noted by {4t the minimum conditional risk

Con) =t Co(n, f) = Co(n, 13) (6)

satisfies two properties. First, it is a concave functiom ¢f < [0, 1])}. Second, iff; is differen-
tiable, thenC'; (n) is differentiable and, for any paiw, ) such that = f7 (1),

C¢(777 U) - 02(77) = B—C; (7]’ fl)v (7)
where
Br(n,i) = F(n) — F(i) — (n—0)F' (). 8)
is the Bregman divergence of the convex function The second property provides an interesting
interpretation of the learning algorithms as methods feraktimation of the class posterior proba-
bility n(x): the search for th¢ (x) which minimizes (4) is equivalent to a search for the prolitgbi

estimatefj(x) which minimizes (7). This raises the question of whetherimining a cost of the
form of (4) is the best way to elicit the posterior probapilit(x).

3 Probability elicitation

This question has been extensively studied in statisticpatticular, Savage studied the problem of
designing reward functions that encourage probabilitgdasters to make accurate predictions [6].
The problem is formulated as follows.

e let I; (7)) be the reward for the predictiopwhen the eveny = 1 holds.
e let7_4(7) be the reward for the predictiohwhen the eveny = —1 holds.

The expected reward is

I(n, ) = nh(n) + (1 = n)I-1(7). 9)
Savage asked the question of which functidns), I (-) make the expected reward maximal when
7 = n,Vn. These are the functions such that

I(n,7n) < I(n,n) =J(n), ¥n (10)

with equality if and only ifj = 5. Using the linearity ofl (n,#) onn, and the fact that/(n) is
supported byi (n,77) at, and only aty = 7, this implies that/(n) is strictly convex [6, 7]. Savage
then showed that (10) holds if and only if

Litn) = Jm)+ 1 -n)J(n) (11)
Ii(n) = Jn)—nJ'(n). (12)
Defining the loss of the prediction gfby 7 as the difference to the maximum reward
L(n,n) = 1(n.n) — I(n,7)

'Here, and throughout the paper, we omit the dependengenk, whenever we are referring to functions
of n, i.e. mappings whose range[is 1].




Table 2: Probability elicitation form for various machine learning algorithms, andage'¢ procedure. In
Savage 1and &' = m + k.

Algorithm Ii(n) I_1(n) J(n)

Least squares —4(1 —n)? —4n? —4n(1 —n)

Modified LS —4(1 —n)? —4n? —4n(1 —n)

SVM sign[2n —1] — 1 —sign[2n —1] —1 [2n—1] -1
Boosting —y/ 52 -/ —2¢/n(1 —n)
Log. Regression logn log(1 —n) nlogn + (1 —n)log(l —n)

Savage 1 k(1 —n)2+m' +1 —kn?>+m kn? +1In+m
Savage 2 —k(1/n+logn) +m’ +1 —klogn + m/ m+In— klogn

it follows that

L(T)aﬁ) = BJ(T)vﬁ)a (13)
i.e. the loss is the Bregman divergence/oHence, for any probability, the best predictiof) is the
one of minimum Bregman divergence with Savage went on to investigate which functiof(g)
are admissible. He showed that for losses of the fafm, 1) = H(h(n) — h(7})), with H(0) = 0
andH (v) > 0,v # 0, andh(v) any function, only two cases are possible. In the fifst) = v, i.e.
the loss only depends on the difference 7, and the admissibld are

Ji(n) = ki + Iy +m, (14)
for some integergk, I, m). In the second(v) = log(v), i.e. the loss only depends on the rafj6j,
and the admissiblg are of the form

Ja(n) =m +In— klogn. (15)

4 Classification vs. probability elicitation

The discussion above shows that the optimization carriethpthe learning algorithms is identical
to Savage’s procedure for probability elicitation. Botlogedures reduce to the search for

7" = argmin Br(n, 1), (16)

whereF'(n) is a convex function. In both cases, this is done indire@bvage starts from the speci-
fication of F'(n) = J(n), from which the conditional rewards () andI;(n) are derived, using (11)
and (12).77* is then found by maximizing the expected rewd(d, 1) of (9) with respect toj. The
learning algorithms start from the logg-). The conditional riskCy(, f) is then minimized with
respect tof, so as to obtain the minimum conditional riéK () and the corresponding; (7). This

is identical to solving (16) withF’(n) = —C7(n). Using the relation/ (n) = —C7(n) itis possible
to express the learning algorithms in “Savage form”, i.eprasedures for the maximization of (9),
by deriving the conditional reward functions associatethwiach of theC'; (n) in Table 1. This is
done with (11) and (12) and the results are shown in Table all kases; () = —¢(f;(n)) and

I_1(n) = —o(=f;(n)).
The opposite question of whether Savage’s algorithms beeegpd in “machine learning form”, i.e.
as the minimization of (4), is more difficult. It requires thie I;(n) satisfy
Li(n) = —o(f(n) 17)
Ii(m) = —o(=f(n)) (18)

for somef (), and therefore constraingn). To understand the relationship betwekm, andf; it
helps to think of the latter as an inverse link function. Gswming thayf; is invertible, to think of
n= (f;)—l(v) as a link function, which maps a reainto a probabilityn. Under this interpretation,
it is natural to consider link functions which exhibit thdlfoving symmetry

fHv) =1= " (v). (19)

Note that this implies thaf ~(0) = 1/2, i.e. f mapsv = 0ton = 1/2. We refer to such link
functions as symmetric, and show that they impose a spagiahetry onJ (7).



Table 3:Probability elicitation form progresses from minimum conditional risk, ankifimction (f;;) ™" (n),
to loss¢. f;(n) is not invertible for the SVM and modified LS methods.

Algorithm J(n) (f5) "' (v) $(v)
Least squares —4n(1 —n) s(v+1) (1-v)?
Modified LS —4n(1 —n) NA max(1 — v, 0)?

SVM [2n—1|—1 N/A max(1 — v,0)
Boosting —2y/n(1=1n) i exp(—v)
Logistic Regression nlogn + (1 —n)log(l —n) 16? log(1+e7")

Theorem 1. Let I;(n) and I_;(n) be two functions derived from a continuously differengabl
function J(n) according to (11) and (12), andi() be an invertible function which satisfies (19).
Then (17) and (18) hold if and only if

J(n)=J(1—n). (20)
In this case,

$(v) = =JUf T W] = A= fTH )T [F T w)]- (21)

The theorem shows that for any pdifn), f(n), such that/(n) has the symmetry of (20) antin)
the symmetry of (19), the expected reward of (9) can be writethe “machine learning form”
of (4), using (17) and (18) with the(v) given by (21). The following corollary specializes this
result to the case whetg(n) = —C5(n).

Corollary 2. LetI;(n) andI_1(n) be two functions derived with (11) and (12) from any continu-
ously differentiable/(n) = —C'(n), such that

Cg(n) = Cg(1 —n), (22)
and f,(n) be any invertible function which satisfies (19). Then
Li(n) = —o(fs(n) (23)
Iai(n) = —o(=fs(n)) (24)
with
¢(v) = Clf5 ()] + (1= f5H W)NCH)[f5 (). (25)

Note that there could be many paissf, for which the corollary holds Selecting a particulaf,
“pins down” ¢, according to (25). This is the case of the algorithms in &ahlfor whichC’j;(n)
and f; have the symmetries required by the corollary. The link fiams associated with these

algorithms are presented in Table 3. From these and (25pdsdsible to recoves(v), also shown
in the table.

5 New loss functions

The discussion above provides an integrated picture ofrttaehine learning” and “probability elic-
itation” view of the classification problem. Table 1 sumrmas the steps of the “machine learning
view”: start from the lossp(v), and find 1) the inverse link functiofi; () of minimum condi-
tional risk, and 2) the value of this risIR’;;(n). Table 3 summarizes the steps of the “probability
elicitation view”: start from 1) the expected maximum red/éunctionJ(n) and 2) the link func-
tion (f;)—l(v), and determine the loss functigrfv). If J(n) = —C(n), the two procedures are
equivalent, since they both reduce to the search for theability estimate;* of (16).

Comparing to Table 2, it is clear that the least squares pioes are special cases of Savage 1, with
k = —1 = 4andm = 0, and the link functiom; = (v + 1)/2. The constraink = —[ is necessary

*This makes the notatiofy, andC; technically inaccurateC’; , would be more suitable. We, nevertheless,
retain theC'; notation for the sake of consistency with the literature.
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Figure 1:Loss functiong(v) (left) and minimum conditional risk'; () (right) associated with the different
methods discussed in the text.

for (22) to hold, but not the others. For Savage 2, a “machéaening form” is not possible (at
this point), becausd(n) # J(1 — n). We currently do not know if such a form can be derived
in cases like this, i.e. where the symmetries of (19) and28) are absent. From the probability
elicitation point of view, an important contribution of tlmeachine learning research (in addition
to the algorithms themselves) has been to identify defunctions, namely those associated with
the techniques other than least squares. From the maclsingng point of view, the elicitation
perspective is interesting because it enables the demivafinew functions.

The main observation is that, under the customary spedtficatf ¢, both C;(n) and f;(n) are
immediately set, leaving no open degrees of freedom. In) thetselection of can be seen as the
indirect selection of a link functio(lfg)—1 and a minimum conditional risk’; (n). The latter is an
approximation to the minimum conditional risk of tAel loss C;;O/1 (n) =1—max(n,1—mn). The

approximations associated with the existing algorithnesstwown in Figure 1. The approximation
error is smallest for the SVM, followed by least squaresjdtig regression, and boosting, but all
approximations are comparable. The alternative, suggjdstehe probability elicitation view, is

to start with the selection of the approximation directly.alddition to allowing direct control over
the quantity that is usually of interest (the minimum expédatsk of the classifier), the selection of
C(n) (which is equivalent to the selection dfn)) has the added advantage of leaving one degree
of freedom open. As stated by Corollary 2 it is further pokesib select across functions, by
controlling the link functionfs. This allows tailoring properties of detail of the classifierhile
maintaining its performance constant, in terms of the etqubidsk.

We demonstrate this point, by proposing a new loss funetio/e start by selecting the minimum
conditional risk of least squares (using Savage’s versith v = — = 1,m = 0) C;(n) =
n(1 — n), because it provides the best approximation to the Bayes, @hile avoiding the lack of
differentiability of the SVM. We next replace the traditadrink function of least squares by the
logistic link function (classically used with logistic negssion)f; = %log # When used in the
context of boosting (LogitBoost [3]), this link function ideen found less sensitive to outliers than
other variants [8]. We then resort to (25) to find théunction, which we denote b$avage loss

1

P(v) = A+ e (26)

A plot of this function is presented in Figure 1, along witloske associated with all the algorithms
of Table 1. Note that the proposed loss is very similar to éfiggast squares in the region whéog

is small (the margin), but quickly becomes constant as —oco. This is unlike all other previous
functions, and suggests that classifiers designed withalvdass should be more robust to outliers.

It is also interesting to note that the new loss function is ganvex, violating what has been an
hallmark of theg functions used in the literature. The convexityqfs, however, not important,
a fact that is made clear by the elicitation view. Note tha tlonvexity of the expected reward
of (9) only depends on the convexity of the functidnén) andZ_;(n). These, in turn, only depend
on the choice of/(n), as shown by (11) and (12). From Corollary 2 it follows that,leng as
the symmetries of (22) and (19) hold, ands selected according to (25), the selectiontf(n)



Algorithm 1 SavageBoost
Input: Training setD = {(x1,v1),...,(Xn,yn)}, Wherey € {1,—1} is the class label of
examplex, and numbeM/ of weak learners in the final decision rule.
Initialization: Select uniform Weightaél) = ﬁ,w.
form={1,...,M} do
compute the gradient st&p,, (x) with (30).

update weightss; according tow!™ ") = (™) x G (x0),
end for
Output: decision ruleh(x) = sgn[zn]‘le G (x)].

completely determines the convexity of the conditiondt 6§ (4). Whetheryp is itself convex does
not matter.

6 SavageBoost

We have hypothesized that classifiers designed with (28)IdHze more robust than those derived
from the previouss functions. To test this we designed a boosting algorithnetés the new loss,
using the procedure proposed by Friedman to derive Real8losAt each iteration the algorithm
searches for the weak learn@(x) which further reduces the conditional rigk- x [¢(y(f(x) +
G(x)))|X = x] of the currentf (x), for everyx € X. The optimal weak learner is

G*(x) = arg gg;{n(X)%(G(X)) + (1= n(x))¢u(~G(x)) } (27)
where
1
$ulyGX) = G g 7o) (28)
and
w(x,y) = ¥/ ™) (29)
The minimization is by gradient descent. Setting the gratdigth respect t@(x) to zero results in
e 1 Puy=1Jx)
G*(x) = 5 <1og Poly = —11%) (30)

where P, (y = i|x) are probability estimates obtained from the re-weightathing set. At each
iteration the optimal weak learner is found from (30) andeighing is performed according to (29).
We refer to the algorithm eSavageBoostind summarize it in the inset.

7 Experimental results

We compared SavageBoost to AdaBoost [9], RealBoost [3]LagitBoost [3]. The latter is gen-
erally considered more robust to outliers [8] and thus a grodiidate for comparison. Ten binary
UCI data sets were used: Pima-diabetes, breast canceodiagireast cancer prognostic, original
Wisconsin breast cancer, liver disorder, sonar, echoiagram, Cleveland heart disease, tic-tac-toe
and Haberman'’s survival. We followed the training/testimgcedure outlined in [2] to explore the
robustness of the algorithms to outliers. In all cases, fold Yalidation was used with varying
levels of outlier contamination. Figure 2 shows the averger of the four methods on the Liver-
Disorder set. Table 4 shows the number of times each mettomiiped the smallest error (#wins)
over the ten data sets at a given contamination level, asasethe average error% over all data
sets (at that contamination level). Our results confirm iprev studies that have noted AdaBoost's
sensitivity to outliers [1]. Among the previous methods Rdast indeed performed the worst, fol-
lowed by RealBoost, with LogistBoost producing the bestitss This confirms previous reports
that LogitBoost is less sensitive to outliers [8]. Savage®@roduced generally better results than
Ada and RealBoost at all contamination levels, includifig contamination. LogitBoost achieves
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Figure 2:Average error for four boosting methods at different contaminatieglse

Table 4:(number of wins, average error%) for each method and outlier ptge.

Method 0% outliers | 5% outliers | 40% outliers
Savage Loss (SavageBoost(4,19.22%) | (4,19.91%) | (6,25.9%)
Log Loss(LogitBoost) | (4,20.96%) | (4,22.04%) | (3,31.73%)
Exp Loss(RealBoost) (2,23.99%) | (2,25.34%) | (0,33.18%)
Exp Loss(AdaBoost) (0,24.58%) | (0,26.45%) | (1,38.22%)

comparable results at low contamination levél%(5%) but has higher error when contamination
is significant. With40% contamination SavageBoost hésvins, compared t& for LogitBoost
and, on average, abo6% less error. Although, in all experiments, each algorithns wowed
50 iterations, SavageBoost converged much faster than tleespttequiring an average 25 itera-
tions at0% cantamination. This is in contrast 50 iterations for LogitBoost and5 iterations for
RealBoost. We attribute fast convergence to the boundadeaf the new loss, that prevents so
called "early stopping” problems [10]. Fast convergencefi€ourse, a great benefit in terms of the
computational efficiency of training and testing. This ssuill be studied in greater detail in the
future.
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A Proof of Theorem 1

Proof. We start by noting that (17) and (18) are equivalent to

L{f7' ()] = —¢(v) (31)
IL[f7H )] = —¢(-v), (32)
or
I [f7 )] = Ll (=)l 33)
Using (19)
Ia[f7 )] = Ll = 71 (v)] (34)
and
I_1[n] = NL[1—n. (35)
From (11) and (12), it follows that (17) and (18) hold if andyoifi
J(n) = J(L=n) =nlJ'(n) +J' (1 —n). (36)

Assume that (20) holds. Taking derivatives on both sidés;) = —J'(1 —n), (36) holds and, thus,
so do (17) and (18). To show the converse, assume that (3@3.hbhis implies that’ (0) = J(1).
To show that (20) holds foy ¢ {0, 1}, we take derivatives on both sides of (36), which leads to

J"(n) = J"(1=mn). 37)
This implies that
J'(n)=—J(1—-n)+k (38)
for some constarit. Since, from (36),J'(1/2) = 0 it follows thatk = 0. This implies that
Jm)=JA—n)+k 39)

for some constarit. FromJ(0) = J(1) it follows thatk = 0, showing that (20) holds. Finally, (21)
follows from (31) and (11). O



