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Abstract— We introduce an empirical Bayesian procedure for
the simultaneous segmentation of an observed motion field and
estimation of the hyper-parameters of a Markov random field
prior. The new approach approach exhibits the Bayesian appeal
of incorporating prior beliefs, but requires only a qualitative de-
scription of the prior, avoiding the requirement for a quantitative
specification of its parameters. This eliminates the need for trial-
and-error strategies for the determination of these parameters
and leads to better segmentations.

Index Terms: motion segmentation, layered representations, em-
pirical Bayesian procedures, estimation of hyper-parameters, statisti-
cal learning, expectation-maximization.

I. INTRODUCTION

The problem of motion representation is closely related to
that of scene segmentation, and efficient motion estimation
solutions must be capable of jointly addressing the two com-
ponents. This observation has led to a generation of algorithms
which iterate between optic flow estimation and segmenta-
tion [6], [9]. From a statistical perspective, such algorithms can
be seen as variations of the expectation-maximization (EM)
algorithm [3]. EM-based approaches have various attractives
for segmentation, such as proceeding by taking non-greedy soft
decisions with regards to the assignment of pixels to regions,
or allowing the use of sophisticated priors, such as Markov
random fields (MRFs), capable of imposing spatial coherence
on the segmentation [8], [10], [11]. The main difficulty is,
however, that such priors typically have parameters whose
values are difficult to determine a priori. In practice, these
parameters are commonly set to arbitrary values or adapted to
the observed data through heuristics.

In this work [8], we exploit the fact that EM is itself
suited for empirical Bayesian (EB) [2] data analysis to develop
a framework for estimating the prior parameters that best
explain the observed data. This eliminates the need for trial-
and-error strategies for parameter setting and leads to better
segmentations in less iterations.

Il. BAYESIAN AND EMPIRICAL BAYESIAN INFERENCE

Assume an observer making inferences about the world
property €2, given the image feature w. Under the Bayesian
philosophy, properties in the world are random variables char-
acterized by probability densities that express the observer’s
belief in their possible configurations. All inferences are based
on the posteriori density
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where +y is a parameter that controls the shape of the property’s
prior.

Since observation of the data merely re-scales prior be-
liefs [5] it is important to get the priors right, a task which
is generally difficult in practice. Typically, one does not have
absolute certainty about the shape of the prior or how to set
its parameters, which must be therefore regarded as random
variables. That is, instead of (1) inferences should be based
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While from a perceptual standpoint such a hierarchical struc-
ture has the appeal of modeling changes of prior belief accord-
ing to context (different contexts lead to different values of ~),
from a computational standpoint it significantly increases the
complexity of the problem. After all, the parameters of P(y)
are themselves random variables, as well as the parameters of
their densities, and so on. We are therefore caught on a endless
chain of conditional probabilities which is computationally
intractable.

The solution suggested by the EB philosophy is to replace
~ by the estimate 4 that maximizes the marginal distribution
P(w|7). Inferences are then based on (1) using this estimate.
While, strictly speaking, this approach violates the fundamen-
tal Bayesian principle that priors should not be estimated from
data, in practice it leads to more sensible solutions than setting
priors arbitrarily, or using priors whose main justification
comes from computational simplicity. More importantly, it
breaks the infinite chain of probabilities mentioned above,
while still allowing context-dependent priors.

Because prior parameters are related to observed im-
age features by hidden world properties, P(w|y) =
J P(w|)P(2]7)dS2, the maximization of P(w|y) fits natu-
rally into an EM framework. Hence, the EB perspective not
only supports the recent trend towards the use of EM for
segmentation, but extends it by providing a meaningful way
to tune the priors to the observed data.
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I1l. DOUBLY STOCHASTIC MOTION MODEL

Our approach to image segmentation is based on linear
parametric motion models, according to which the motion of
a given image region is described by p(x) = ¥(x) ¢, where
x = (z,y)7 is the vector of pixel coordinates in the image
plane, p(x) = (pz(x),py(x))T the pixel’s motion, and ¢ =
(a1,...,ap)  the parameter vector which characterizes the
motion of the entire region. This motion model is embedded
in a probabilistic framework, where pixels are associated with
classes that have a one-to-one relationship with the objects
in the scene. We assume that, conditional on image I; ; and



the class of pixel x in image I;, this pixel is drawn from an
independent identically distributed (iid) Gaussian process
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where z(x) = (21(x),...,2r(x))T is a vector of binary
indicator variables with z(x) = e; (where e; is the i** vector
of the standard unitary basis) if and only if pixel x belongs to
region 4, p;(x) the region’s motion, ¢; its variance, and R the
total number of regions®. In this work, we consider the case
of affine motion where P = 6, ¥(x) is a 2 x 6 matrix with
rows (1,z,y,0,0,0) and (0,0,0,1,z,y), but the framework
is generic.

Denoting by m;(x) the conditional probabilities P(z(x) =
ei|z,0), the dependencies between the states of adjacent pixels
in the images are modeled by an MRF prior

Wi(x) = P(Z(X) = eilzn(x)’g) — ZieUx(ei\e) (4)
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C € C, C is the set of cliques in a neighborhood system G,
z,(x) is the configuration of the neighbors of site x under G,
and V¢ (z(x), z,(x)|0) a function of the cliques involving site
x and its neighbors.

While all the results can be extended to any valid G and
Ve, we concentrate on a second-order system where the
neighborhood of pixel x, n(x), consists of its 8 adjacent pixels,
and
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where v;(x) = E[z;(x)|0] = P(z;(x) = 1|8). Hence, 8 =
(ala' "JaR;B)T and
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where k;(x) = > cnx) %i(y) is the expected number of
neighbors of site x in state ¢ under ;, 8 controls the degree of
clustering, i.e. the likelihood of more or less class transitions
between neighboring pixels, and «; the likelihood of each of
the regions.

1V. EM-BASED PARAMETER ESTIMATION

The fundamental computational problem posed by the EB
framework is that of maximizing the marginal likelihood of the
observed motion field as a function of the motion and MRF
parameters

P(LT,_1,®,0) = > P(L|z,1,_1,®)P(z[I;_1,0),
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where the summation is over all possible configurations of the
hidden assignment variables vector z, and ® = (¢, ..., ¢g)7
is the vector of all motion parameters. The pair (I;,z) is
usually referred to as the complete data and has log-likelihood

l. = logP(1;,z|l;—1,®,0) 9)
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where, for simplicity, we have dropped the dependence on
| P

The EM algorithm maximizes the likelihood of the incom-
plete, observed, data by iterating between two steps that act on
the log-likelihood of the complete data. The E-step computes
the so-called @ function
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where 2@ = (&® 9T is the vector of parameter
estimates obtained in the previous iteration. The M-step then
maximizes this function with respect to & and 6. In general,
both steps are analytically intractable.

A. Segmentation with known prior parameters

The problem can be significantly simplified by assuming
that the prior parameters are known. In this case, there are no
parameters to estimate in E[log P(z|0)|I;, ()] and this term
can be eliminated. Nevertheless, the exact computation of the
remaining E[z;(x)|T;, 2®)] is still a tremendous challenge,
which can only be addressed through Markov chain Monte
Carlo procedures. However, nesting such procedures inside
the EM iteration would lead to a prohibitive amount of
computation.

Zhang et al. [11] have shown that if Besag’s pseudo-
likelihood (PL) approximation [1]
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is used, then it is reasonable to assume that v;(x) ~ m;(x)
and, from Bayes rule,
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This suggests an iterative procedure for the computation
of the expectations required by the E-step: at iteration p, 1)
compute the conditional assignment probabilities, ng) (x),i =
., R, sequentially by visiting each of the pixels in the
image in a pre-defined (typically raster scan) order, assuming
at each x that the current posterior estimates )\z(’)_l)(x) of the

assignment probabilities of the neighboring pixels are the true
marginals ~;(x), i.e.

(11)

(12)

7P (x) = exp[a2+ B3 AV,
yen(x)
and 2) update the posterior assignment probabilities using (12).

This is an extension of Besag’s iterated conditional modes

(13)



(ICM) procedure, capable of supporting the soft decisions
required by EM, and we will therefore refer to it as iterated
conditional probabilities (ICP). It was first proposed, in the
context of texture segmentation, by Zhang et al. [11].

B. Empirical Bayesian Segmentation

The procedure above has two major limitations. First, the
assumption that the prior parameters are known is, in general,
unrealistic. Second, with arbitrary parameter selections, there
is no way to guarantee that the posterior estimates /\g”) (x)
converge to the true marginals v;(x) and it is difficult to
justify the assumption behind step 1). We now show that 1) EB
estimates provide a natural answer to these two problems and
2) under the PL and ICP approximations these estimates do not
imply a significant increase in complexity: the only additional
requirement is a simple concave maximization in the M-step,
no extra computation being required by the E-step.

1) The E-step: The evaluation of E[log P(z|0)|I;,E®)]
is significantly simplified by the PL approximation since,
from (11), (4), and the binary nature of z;(x),

Ellog P(2/6)|1;,E7)] & > E[zi(x) log mi(x)[T;, E®)].
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Furthermore, under ICP, whenever a pixel is visited m;(x) is
approximated by wz(p) (x) which, as shown by (13), has no
random components. Hence,

E[log P(z|0)|1;, E®)] ZE[zl x)|I;, E
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i.e. Ellog P(z|0)|I;,E®)] simply requires the evaluation of
the expectations A;”’, which were already necessary for the
evaluation of the remaining components of the @ function.
Therefore, under the above approximations, there is no com-
putational cost in evaluating (9 completely.

2) The M-step: The M-step maximizes the @) function with
respect to both the motion and MRF parameters. Combin-
ing (10) (9), (12), (14) and (3)
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The maximization of ) with respect to the motion parame-
ters is a variation of the least-squares problem found in image
registration [9], and solvable by any of the standard techniques
from the registration literature. In our implementation, we use
Gauss-Newton’s method. The maximization with respect to
the MRF parameters depends only on the first term. Noticing,
from (4) and (5) that
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on 8, it follows that
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where we have used the fact that ) . A;(x) = 1 and subscripts
prior and post indicate expectations taken over the prior (m;)
and posterior (A;) distributions, respectively. Similarly,

VgQ Z E[Vo post - Z E[Vo
Z CO’U[V& Ux (Z(X))]prz’o’ra

))]prior

where Cov[VeUx(z(x))]prior i the covariance of the gra-
dient VyUx(z(x)) under the prior distribution. Typically,
Ux(z(x),6) is a linear function of 6, and this expression
reduces to the third term. Since the covariance matrixes in
the summation are positive definite, V2@ is negative definite
over the entire parameter space and the Q function is concave.

This implies that standard non-linear programming tech-
niques such as Newton’s method will achieve its global
maximum in few iterations and, together with the fact that
no extra computation is required in the E-step, makes the cost
of EB segmentation only marginally superior to that required
when the parameters are pre-set. In our implementation, we
have indeed used Newton’s method to solve the maximization
with respect to the hyper-parameters.

For the specific potentials of (7), we have

9 0
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Hence, a step in the direction of the gradient changes a so
that, at each pixel, the prior assignment probabilities move
towards the posterior assignment probabilities derived from the
observed motion. Similarly, a gradient step changes 5 so that,
at each pixel, the expected number of neighbors in the same
state as the pixel is equal under both the prior and the posterior
distributions. l.e. EB estimation sets the hyper-parameters to
the values that best explain the observed data, both in terms
of assignment probabilities and average number of neighbors
in the same state as the neighborhood’s central pixel. This not
only is intuitive, but justifies the assumption behind step 1) of
section IV-A.

There remains, however, one problem: a pixel whose motion
is poorly explained by all the models in & will originate
zero class-conditional likelihoods and the corresponding pos-
terior region assignment probabilities A;(x) will be undefined.
To avoid this problem, we rely on the fact that a pixel which
cannot be explained by any of the models is an outlier, and set
the corresponding \;(x) to zero for all ¢. This is equivalent to
assuming a background outlier process of uniform likelihood
over the entire parameter space, and originates robust estimates
without increasing the complexity of the M-step [4].

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

We tested EB motion segmentation on various video se-
quences, starting with a synthetic sequence that allows ob-
jective performance evaluation. The sequence is a realization



Fig. 1. Segmentation of a synthetic sequence. From left to right: first frame, segmentation after 1, 10, and 20 EM iterations.
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Fig. 2. Evolution of several parameters of the motion model as a function of the EM iteration: a) distance between parameter estimates and true values, b)
variance of the Gaussian associated with each mixture component, c) clustering parameter 3, and d) percentage of pixels classified as outliers. In a) and b)
each curve corresponds to one component of the mixture model.

Fig. 4. Flower garden segmentations with the MRF clustering parameter set to arbitrary values (left to right 3 =0, 8 = 0.7, and g = 1.2).



of the model of section IlI: a segmentation mask was first
drawn, using Gibbs sampling, from the Gibbs distribution (8)
with parameters a; = 0, 8 = 0.7. A different texture (constant
intensity plus additive Gaussian noise) was then assigned to
each region. Finally, subsequent frames of the sequence were
created according to (3) with o; = 0.

Figure 1 presents the segmentations obtained after 1, 10,
and 20 iterations. The algorithm converges quickly to a seg-
mentation that is visually very close to the optimal and, as
expected, outlying pixels (shown in white) are located mostly
along occlusion boundaries, where the assumptions behind
the motion model break down. We emphasize that in all the
examples the segmentations are shown exactly as they are
produced by the segmentation algorithm. In fact, we have not
even tried to reassign the outlying pixels (shown in white in
all figures) to the segmented regions.

Figure 2 a) shows that the motion parameters converge
quickly to the true values. Quite interesting is the behavior
of the variance estimates, shown in b): they increase in
the early iterations, but decrease and converge to zero as
the segmentation converges. This variance increase, and the
corresponding spread of the associated Gaussians, allows each
region to accept new pixels and, therefore, progress towards
the optimal estimates. Notice that each mixture component
is subject to a different variance increase, whose magnitude
seems to be a function of the error of the initial estimate for
its motion parameters.

Yet another interesting feature, visible in c), is the fact that
the § tends to be small in early iterations increasing as the
segmentation moves towards convergence, and converging to a
final estimate which is very close to the parameter’s true value.
Because lower values of S lead to a smaller constraint for a
pixel to be in the same state as the pixels in its neighborhood,
this behavior allows pixels to move freely between regions
when there is a lot of uncertainty with regards to the segmenta-
tion (early iterations), constraining this freedom as the process
approaches convergence. It is revealing to notice that heuristic
procedures based on parameter updates qualitatively similar to
the ones above have been proposed in the literature [1], [4],
[7] as a way to escape local minima and to improve the speed
and accuracy of segmentation algorithms. These procedures
rely, however, on pre-defined updating schedules which are
hard to justify, and do not generalize well across different
types of imagery. On the other hand, the updates associated
with the EB framework have a theoretical justification and are
completely driven by the data, i.e. generic.

The MRF clustering parameter can also be viewed as
the inverse of the temperature usually associated with Gibbs
distributions. Under this perspective, the behavior of plot c), is
that of an annealing process, where optimization is performed
over a succession of prior distributions with characteristics
controlled by this temperature: high temperatures lead to
approximately uniform prior region assignment probabilities
in the early iterations (allowing pixels to switch between
regions very easily), the distribution becoming more peaked
at later iterations where lower temperatures are used (making
it difficult for pixels to change state). The EB approach is
not a true simulated annealing procedure, as it is completely

driven by the data. No pre-defined schedules are required, and
convergence is fast but not necessarily to a global maximum
of the likelihood of the observed data. It exhibits however
a behavior qualitatively similar to that of simulated annealing
which appears to give it some robustness against local minima.

Figure 3 presents segmentations for four real sequences
with different levels of difficulty (from pure affine motion
and small occlusion on the left, to motion that can only
be coarsely approximated by an affine model and significant
amounts unveiled background on the right). The advantages of
the EB approach are illustrated by Figure 4, where we present
three segmentations of “Flower garden” obtained by setting the
MRF parameters to arbitrary values. The figure shows that, in
this case, the segmentation depends critically on the choice of
the clustering parameter 3. While small values of clustering
lead to very noisy segmentations (left), large values originate
segmentations with reduced accuracy near region boundaries
(right). And even though it may be possible to obtain good
results by a trial-and-error strategy, we were not able to obtain,
in this way, a segmentation as good as or better than the EB
one. For example, setting 8 to the value of the optimal EB
estimate throughout all iterations leads to the segmentation
shown in the center, which is still significantly less accurate
than the one in Figure 3 (notice the leakage between the house
and sky, and house and flower bed regions, and between the
areas of tree detail and sky).
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