Appendix for Holistic Context Models for Visual
Recognition

APPENDIX [
GENERALIZED EXPECTATION MAXIMIZATION (GEM)

The parameters AY = {3}’, a}’} of the contextual class
models of (5) are learned using GEM. This is an extension
of the well known EM algorithm, applicable when the M-
step of the latter is intractable. It consists of two steps. The
E-Step is identical to that of EM, computing the expected
values of the component probability mass 35. The generalized
M-step estimates the parameters cv,. Rather than solving for
the parameters of maximum likelihood, it simply produces an
estimate of higher likelihood than that available in the previous
iteration. This is known to suffice for convergence of the
overall EM procedure [2]. We resort to the Newton-Raphson
algorithm to obtain these improved parameter estimates, as
suggested in [3] for single component Dirichlet distributions.
Omitting the dependence on the concept index w for brevity,

the algorithm iterates between two steps,
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¥ and ¥’ are the Digama and Trigamma functions [3].
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APPENDIX II
COMPUTATION OF IMAGE-SMNS

Given N patch-based SMNs, () the Image-SMN 7* is
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subject to Zle m; = 1. This has Lagrangian
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Setting derivatives with respect to m; to zero leads to
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Summing over 7 and using the constraint ) . m; = 1,
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APPENDIX III
VARIATIONAL APPROXIMATION
Variational  methods  approximate the  posterior

P(m,wi.n|z1.n) by a mean-field variational distribution
q(m,w1.n), indexed by free variational parameters, within
some class of tractable probability distributions F. These
distributions usually assume independent factors,

q(m,win) = q(m;y) [ alwn; ¢, (13)

where ¢(y) and ¢(z;) are categorical models, and ¢(m) a
Dirichlet distribution. Given an observation zi.y, the opti-
mal variational approximation minimizes the Kullback-Leibler
(KL) divergence between the two posteriors

q = arggéijr; KL(q(m,w.n)||P(m, win|z1:n))  (14)
= L(q(m,w1.n)) + log P(z1.n) (15)

where,

E(q(ﬂ'7 wl:N)) = Eq [log Q(Tra wl:N)] -

(16)

Eq [log P(7T7 W1:N, II:N)]-



Since the data likelihood P(z1.n) is constant for an observed
image, the optimization problem is identical to

q*(ﬂ'vwl:N) = argminﬁ(Q(ﬂ'7w1:N))a (17)
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From Appendix A.3 of [1], the update rule for coordinate
descent of the variational parameters is
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such that >, ¢,,; = 1 and, where «; are the parameters of the
prior class distribution P(7; «) and 1) is the Digamma func-
tion [3]. Once the parameters of the variational distribution
are obtained, the SMN for an image can be computed as,
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such that, ij =1 (23)
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Using the Lagrange multiplier, A, we get
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Taking partial derivatives with respect to, m; and \ and setting

them to zero we get,
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From (25) and (26) we get,
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